

(Kenya Certificate of Secondary Education)

INTERNAL MOCK EXAM

PHYSICS (THEORY)

Dec. 2020- 2 Hours

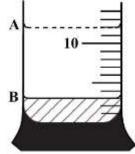
Name	Index No
Adm No	Date:
Signature	Stream :

Instructions to candidates

- a) Write your Name, Index, Admission number and stream in the spaces provided above.
- b) Sign and write the examination date on the spaces provided above.
- c) This paper consists of Two sections; A and B
- d) Answer all the questions in sections A and B in the spaces provided
- e) All workings **must** be clearly shown.
- f) Non-programmable silent electronic calculators may be used.
- g) All your answers must be written in the spaces provided in the question paper.
- *h)* Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- *i)* Candidates must answer the questions in English.

For Examiners use only

Total Score

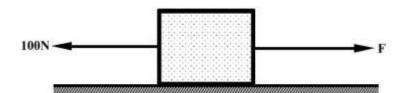

Section	Question	Maximum Score	Candidate's Score
Α	1-14	25	
В	15	10	
	16	12	
	17	10	
	18	11	
	19	12	
		80	

Section A: (25 marks)

Answer ALL the questions in this section in the spaces provided.

1. A stone of mass 18.0g was immersed into a liquid and then removed. Figure 1 shows initial liquid level, A, when the stone was fully immersed and the final level, B, after the stone has been removed.

Figure 1


2.

Determine the density of the stone.

(3	marks)
----	--------

A rubber balloon filled with carbon (IV) oxide is released from a high-flying aeroplane. State and explain what happens to its volume as it falls. (2 marks)

3. Two horizontal strings are attached to a block, resting on a frictionless surface, as shown in figure 2.

Figure 2

A force of 100N pulls on one string. The block does not move. Find the value of the force, F on the other string. (1 mark)

4. Explain what is observed when the temperature of water, which has pollen grains suspended it, is raised. (2 marks)

.....

5. Figure 3 shows a bimetallic strip which can be calibrated to measure temperature. It is put at a place with a temperature of 0°C, a mark for that temperature is made on the scale. It is then moved to a place with a temperature of 100°C. A new mark is made on scale.

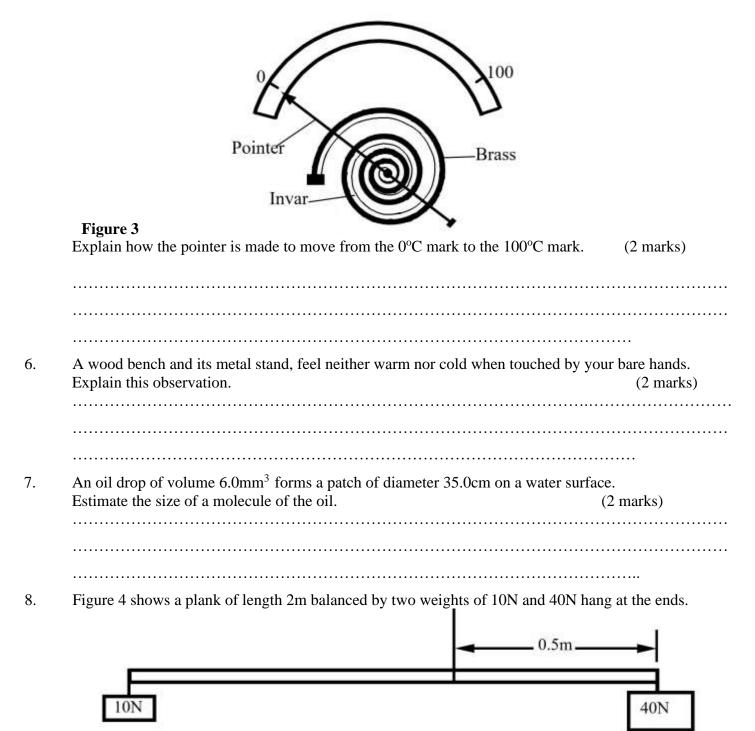


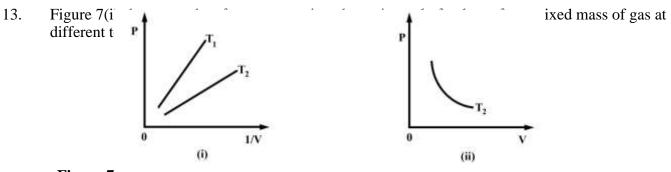
Figure 4

Determine the weight of the plank.

(2 marks)

- **Figure 5** (2 marks) Explain why bottle B is less stable than bottle A. 10. The flow of a fluid in a certain pipe changes from laminar to turbulent. Suggest one possible reason for this observation. (1 mark) 11. Figure 6(a) shows a velocity-time graph for a body moving in a straight line. Velocity Displacement 30 Time(s) 30 Time(s) 10 20 20
- 9. Two identical empty bottles A and B are placed as shown in figure 5.

Figure 6


(a)

On the axes provided in figure 6(b), sketch a displacement-time graph for the motion. (1 mark)
12. Wrapping a bottle of milk with wet cloth is a better method of keeping the milk cold than placing the bottle in a bucket of cold water. Explain this observation. (2 marks)

(b)

ÉcoleBooks

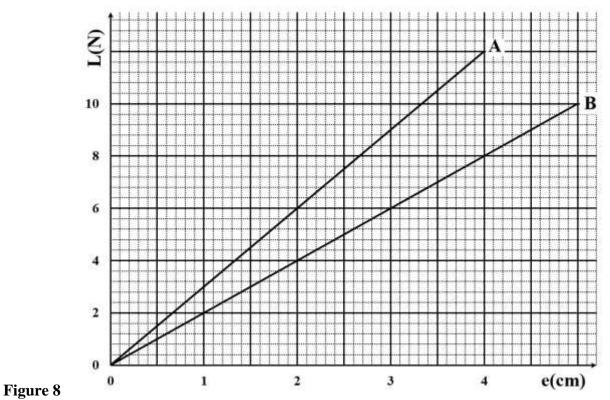
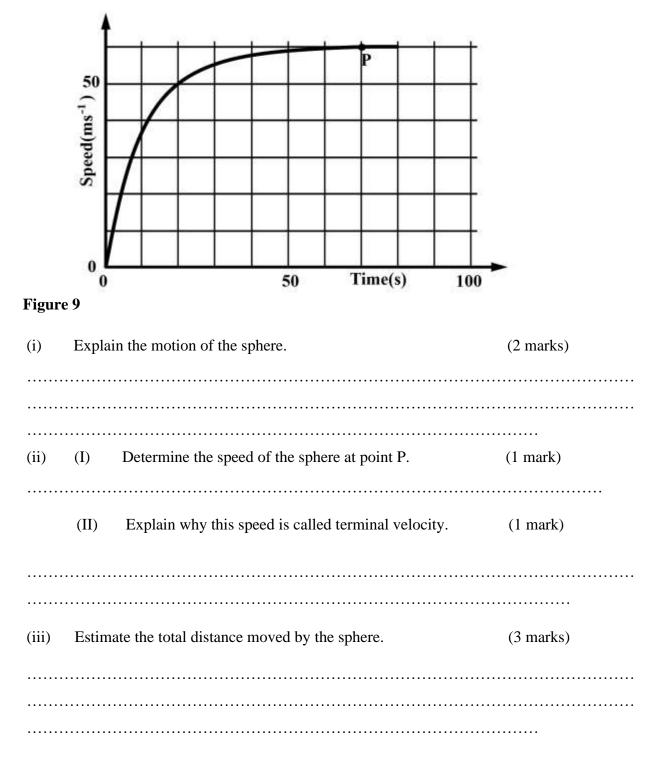

Ecolebooks.com

Figure 7

Sketch, in figure 7(ii) the pressure-volume graph for temperature T_1 . (1 mark)

14. Figure 8 shows load-extension graphs, **A** and **B**, for two springs, of the same length made of the same material.

Explain, in terms of the physical features of the springs, the differences in the graphs.



Section B: (55 marks)

Answer ALL the questions in this section in the spaces provided.

15. a) A small steel sphere falls through a liquid in a tall container. Figure 9 is the speed-time graph of the fall up to the point where the sphere reaches the bottom.

b) Figure 10 shows, a diagram of the sphere at point P.

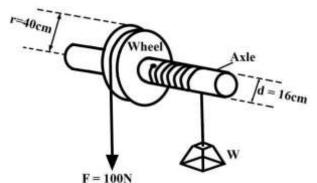

φ φ

Figure 10

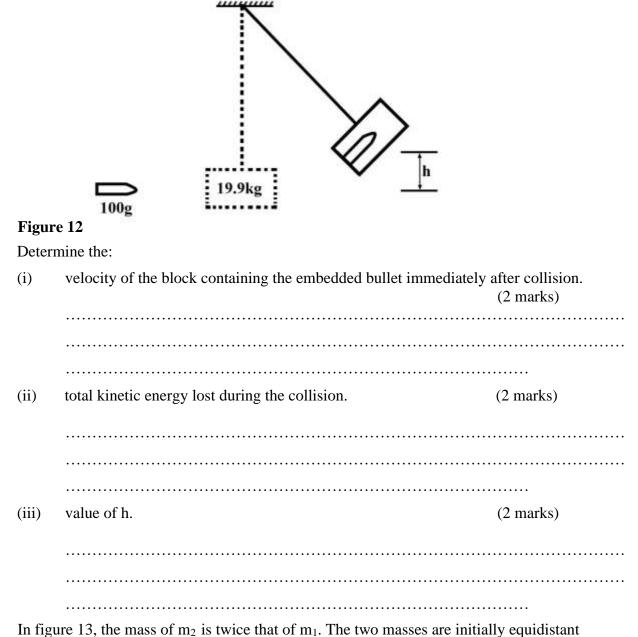
The upthrust, U and two other forces act on the sphere.

(i)	Name the forces labelled A and B.	(2 marks)
	A B	
(ii)	Write an expression relating the three forces.	(1 mark)

16. a) A wheel fitted on axle is free to rotate on a horizontal axis as shown in figure 11. The radius of the wheel is 40cm and that of the axle is 8cm. The system has an efficiency of 90%.

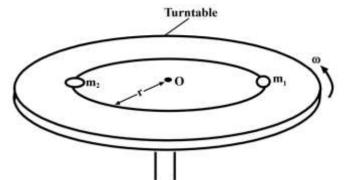
Figure 11

(i) Ü	Starting from the definition of velocity ratio, show that the velocity ratio of the	
	system is given by $V.R = \frac{R}{r}$.	(2 marks)
	1	
(ii)	Determine the:	
	I. Velocity ratio of the system.	(2 marks)
	II. Load W.	(2 marks)



.....

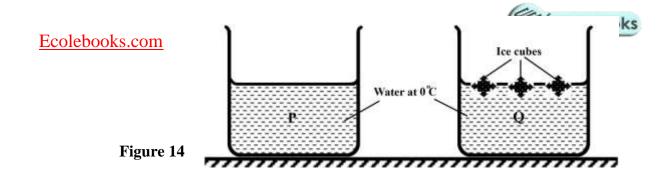
A bullet of mass 100g moving horizontally at a velocity of 250ms⁻¹ hits a wooden block of mass 19.9kg, suspended freely from a light inextensible string. The bullet becomes embedded in the block and the block rises through a vertical distance h, as shown in figure 12


from the centre, O, of the turntable.

17.

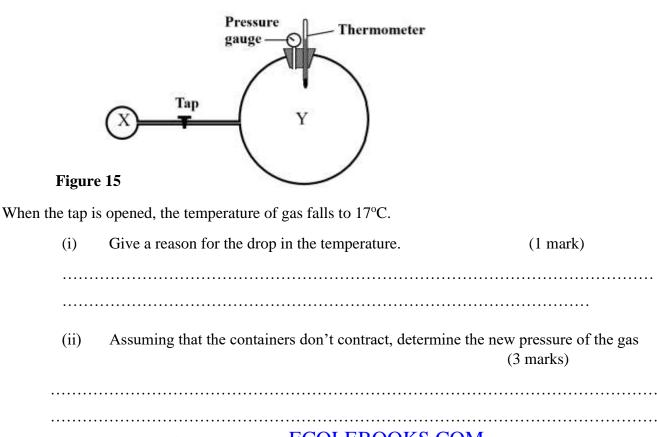
a)

Figure 13

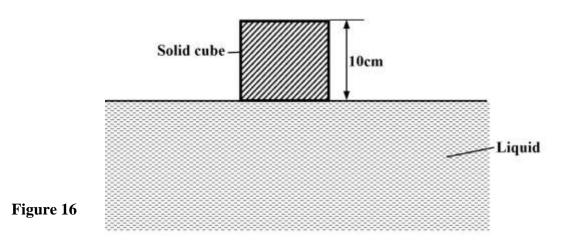

The angular velocity, ω of the turntable gradually increased from zero until the masses slide off the turntable.

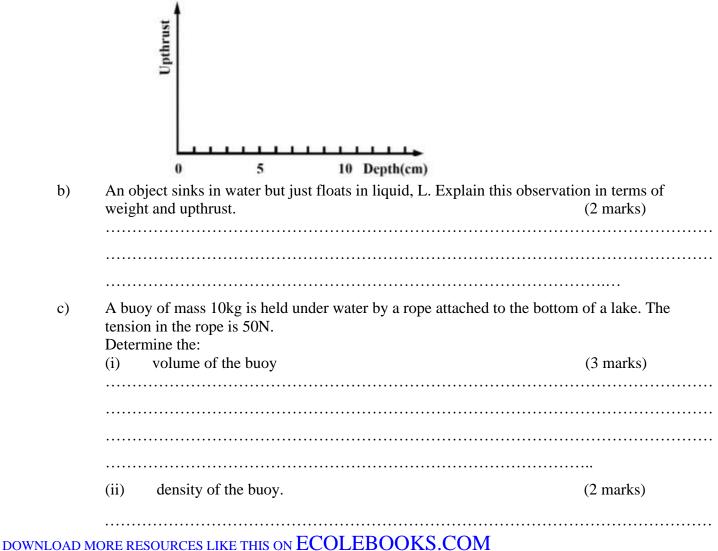
18.

	(i)	State with a reason which of the masses is likely to slide off the turn	(2 marks)
	(ii)	Name the force which provides the centripetal force on the masses.	(1 mark)
b)		ody of mass 300g tied to string moves in a horizontal path of radius 200 to describe an arc length of 12cm:	cm. If it takes
	(i)	Identify the forces acting on the body.	(2 marks)
	(ii)	Determine the angular velocity of the body.	 (3 marks)
			•••••
	(iii)	Determine the centripetal force.	(2 marks)
a)	(i)	State one similarity and one difference between boiling and evapor	
u)	(1)	Similarity	
			Difference
	(ii)	Figure 14 shows two identical beakers P and Q. Beaker P contains	water at 0°C while Q


contains water and ice cubes at 0°C.

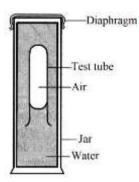
closed and container X is filled with a gas at pressure of 4.0×10^5 Pa and a temperature of 27°C.




.....

19. a) A solid cube of length 10cm is released on the surface of a liquid having the same density as the cube. (see figure 16)

On the axes provided below, sketch a graph showing how the upthrust of the solid cube varies with the depth. (2 marks)



.....

c) A test tube containing some water and some air is inverted so that it floats inside a glass jar full of water. A tight diaphragm fixed at the mouth of the jar. See figure 17.

Figure 17

If the diaphragm is pressed downwards, the test tube moves to the bottom of the jar.		
Explain this observation.	(3 marks)	
	••••••	

THIS IS THE LAST PRINTED PAGE