Structure and bonding

- 1. Ethanol contains molecules p1 which are notp1 responsible for electrical conductivity
- 2. a) A covalent bond is formed by equal contribution of the shared electrons by the atom. p1 Co-ordinate bond is where the shared electrons are contributed by one of the atoms.p1

b)

OR

- 3. a) Have delocalized valency electrons p1
 - b) Aluminium is a better conductor/Aluminium has three delocalized electrons while magnesium has 2. p1 It is resistant to corrosion.
- 4. In addition to vander waals forces, strong hydrogenp bonds exist in ethanol. These bonds require p more energy to break.
- 5. a) Is a covalent bond in which the shared pair of electrons comes from the same atom
- 6. Magnesium has more delocalized electrons than sodium
- 7. (a) Phsophorous chloride (PCl₃)

(b) Hydroxonium ion (H_3O^+)

- 8. Aluminium it has more delocalized (3) electrons than copper (2 e-)
- 9. Hydrogen chloride has got only Van der waal while water has H-bonds in addition to Van der waal forces which are stronger

Ecolebooks.com

- 10. It contains white hoe carbon particles (½mk) that allow to give out light (½mk). When those particles cool down (½mk) they turn black and settle down as soot.(½mk)
- 11. Aluminium chloride hdrolyses $\sqrt{1}$ in solution producing hydroxonium ions $\sqrt{2}$ which turn blue litmus paper red. $\sqrt{2}$
- 12. Silicon (IV) oxide forms giant $\sqrt{4}$ atomic structure of strong covalent $\sqrt{2}$ bonds having high melting point. Carbon (IV) oxide is simple molecular substance of weak intermolecular $\sqrt{2}$

attraction forces \mathcal{A} 9the Van der Walls' forces) that have low melting point.

- 13. *i*)*A*: 2,4 $\sqrt{\frac{1}{2}}$ *B*: 2,7 $\sqrt{\frac{1}{2}}$
- 14. (a) Because aluminium √1 has more delocalized √1 electrons than magnesium.
 (a) It does not corrode. √1
- 15. Magnesium oxide has a giant ionic $\sqrt{\frac{1}{2}}$ structure while silicon (iv) Oxide has a giant atomic structure. Mg O in molten state $\sqrt{\frac{1}{2}}$ contains delocalized ions $\sqrt{\frac{1}{2}}$ which conduct electricity while S_1O_2 has no ions present $\sqrt{\frac{1}{2}}$
- 16. a)
- *ii)* At 25C, sodium chloride is in solid form. Ions cannot move. Between 801 and 1413C sodium chloride is in liquid state, ions are mobile
- b) Both ammonia and water are polar molecules and hydrogen bonds are formed
- c) N ______ H // co-ordinate bond / Dative bond
- d) i) Allotrope

i)

- *ii)* Add methylbenzene to soot in a beaker. Shake and filter. Warm the filtrate to concentrate it. Allow the concentrate to cool for crystals to form. Filter to obtain crystals of fullerene
 - $iii) \frac{720}{12} = 60$
- 17. (a) (i) NACl has mobile ions in molten state and in aqueous solution
 - (ii) Graphite has delocalized electrons in the structure which carry electric current
- 18. (i) I) C Reason:- Good conductor of electricity in both molten and solid state..

II) D-Its melting point is below room temp. and boiling point above room temp.

- (ii) It exist in allotropic form.
- (iii) A conducts electricity by use of mobile ions while C conducts by use of delocalized electrons.

Both <u>must</u> be correct for the 1 mk. I (a) $2Na(_{s)} + 2CH_{3}CH_{2}OH_{(l)}$ $2CH_{3}CHONa_{(aq)} + H_{2(g)}$ (b) Mole ratio btn Na: H = 2:1Mole of Holes $H_{2} = \frac{1200cm^{3}}{2400cm^{3}}$ = 0.05molesMoles of Na = 0.05 x 2 = 0.1molesMass of Na = 0.1 x 23 = 2.3g of sodium (c) Mole ration $C_{2}H_{5}OH:H_{2}$

```
Moles of C_2H_5OH = 0.05 \times 2
= 0.1moles
mass of C_2H_5OH reacted = 0.1 x 46
```

$$= 4.6g$$
Mass evaporated = 50- 4.6
= 45.4g of C₂H₅OH

(d) – Has molecular structure – with hydrogen bonds being molecules While - C_2H_5ONa – has giant ionic structure with ionic bonds

- (a) Water
- (b) In ethanol sinks in water and stream of bubbles observed /seen While in water – floats on water and darts on water
 - Hissing sound is heard (any two)
- 20. (a) ionic or electrovalent

F is metal and H is non metal.

- b) (i) J atomic radius decrease a long a period from left to right nuclear change attraction increase positive nuclear change increase due to increase in the number of protons.
 - (ii) F has a smaller atomic radius than N level down the grown.
- c) W is group 5 period 3

d) Transition metals.

- e) J has 3 valence electrons which and delocalizal whole Q has only 2 electron : hence J has high electrical conductivity due to high number of decalized electron.
- f) The reactions have both metallic and non metal properties
- g) H is more reactive than M non metal reactivity increase up the group due to decrease in electro negativity down the group.

21. (a) (i) Ionic bond

i)

Y losses that is gained by Z

- (ii) Atomic radius of A is larger than that of B has higher nuclear charge than A Electrons in B are drawn closer to the nucleus(½mk)
- (iii) Z is more reactive than B
- Z has a smaller atomic radius so will readily attract extra electron
- (b) (i) Energy needed to remove an electron from an atom in gaseous state
 - (ii) R has a largest atomic radius; (¹/₂mk) Therefore the electron is easily lost
- (iii) Reacts vigorously with water producing gas bubbles that give the hissing sound and propels the metal

The metal floats on water as it is light

$$(iv) 2Q_{(s)} + H_2O_{(l)} \qquad 2QOH_{(aq)} + H_{2(g)}$$

22. a)

Atomic number	Oxide formula	State at RT
N-12	P_2O_3	Q - solid
R- 15	R_2O_5	S- Gas

- *ii)* The atomic radius decreases across the period from M to V. Due to increasing nuclear charge// increasing number of protons which pulls the outermost electrons closer to the nucleus
- *iii) Element V is chemically stable// stable electronic configuration does not gain or loss// share electrons with oxygen to form an oxide*
- **b**)

i)

Oxide	Structure	Bond type
No	Giant ionic	Ionic/ electro valent
<i>TO2</i>	Simple covalent/ molecular	Covalent

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

(¹/₂ mark each – total 2 marks)

c) i) P is a metal with valency electrons free to move but T is a non-metal//molecular has no free valency electrons//molecules are electrically neutral

ii) Amphoteric oxide

23. (i) Period 2 its electronic arrangement is 2,3, or it has two energy levels.
Accept shells or orbitals in place of energy levels
(ii) I- Across a period nuclear charge increases from, left to right exerting greater pull/attraction on available electrons
II-A₄ gains an electron and the incoming electron is repelled by other electrons or electron cloud increases

(*iii*) A₂

P 1

24. a) $P_2Q \sqrt{reject QP_2}$

(iv)

25.	(i) Ice : Bonding : - Covalent $\sqrt{\frac{1}{2}}$		1/2 mk			
		Structure	: - Simple moled	cular $\sqrt{\frac{1}{2}}$	½ mk	2
	(ii) Magnesium chloride : Bonding : - Ionic $\sqrt{\frac{1}{2}}$			¹ /2 mk ¹ /2 mk		
	Structure: - Giant ionic					
<i>26</i> .	(i) Ice : Bonding : - Covalent $\sqrt{\frac{1}{2}}$			1/2 mk		
		Structure	: - Simple moled	cular $\sqrt{1/2}$	1/2 mk	2
	(ii) Magnesiu	m chloride	: Bonding	: - Ionic $\sqrt{1/2}$	1/2	e mk
			Structure: - C	Giant ionic	1/2	2 mk
27.	(a) Zinc oxide .	√1 ZnO			(1 mk)	
	$(b) ZnO_{(s)} + I$	$H_2SO_{4(aq)} \sqrt{1}$	ZnS	$O_{4(aq)} + H_2O$	(1 mk)	2
	(c)	2-				3
	Zn (OH)	\sqrt{I}			(1 mk)	
	4					

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

$$(\boldsymbol{b}) \boldsymbol{C} \stackrel{\mathrm{P}}{\overset{1}{}} \boldsymbol{O}$$

- 29. Diamond has giant atomic structure in each carbon $atom\sqrt{\frac{1}{2}}$ is bonded to four other $\sqrt{\frac{1}{2}}$ carbon atoms arranged in regular tetrahedron shape in all direction forming rigid (strong) $\sqrt{\frac{1}{2}}$ mass of atoms due to uniformity of covalent bonds between the atoms $\sqrt{\frac{1}{2}}$ (2mk)
- 30. 3 Covalent $\sqrt{1}$ bonds and one dative $\sqrt{1}$ bond
- *31. CB*₂
 - Ionic bond
- 32. (a) Covalent bond is bond between non-metal atoms where shared electrons are donated equally by all the atoms involved.
 - Dative bond is a bond in which shared electrons are donated by one atom. (b) The presence of $Ptri^{1/2}$ ple bond in nitrogen requires very high temperatures to break
- 33. (i)

- P 1 - award 1mk if one Hydrogen two electrons donated by nitrogen 0mk if all hydrogen atoms shares
 - Omk if all hydrogen atoms shares electron with nitrogen

P 1

award full mark if Silicon and Hydrogen shares electrons

EcoleBooks

(b) - $NaP_2O^{1/2}has$ stronger ionic bond between ions in it, while SO_2 has a weak Van der walls bond P ½ between its molecule

- \Na₂O requires more heat energy to weaken or break the ionic bonds than SO₂ requires break^Pin^{1/2}g Van der walls bonds
- 35. ALCL₃ has simple molecular structures with weak Vander waals between the molecules M_gCL_2 has giant ionic structures with strong ionic bonds Due to insoluble coating of aluminum oxide which prevents any reaction $\sqrt{1}$