

Name	Index No//
	Candidates Signature
	Date

233/1 CHEMISTRY Paper 1 2 Hours

CANDIDATES 2020 TRIAL KCSE MOCK EXAM

Kenya Certificate of Secondary Education (K.C.S.E)

233/1 CHEMISTRY Paper 1

2 Hours

Instructions to Candidates

(a)Write your name and index number in the spaces provided above.

- (b) Sign and write the date of examination in the spaces provided above
- (c) Answer ALL the questions in the spaces provided in the question paper
- (d) KNEC Mathematical tables and electronic calculators may be used for calculations
- (e) All working **MUST** be clearly shown where necessary
- (f) This paper consists of 15 printed pages
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing
- (h) Candidates should answer the questions in English

FOR EXAMINER'S ONL Y

QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
1-29	80	

This paper consists of 13 printed pages. Candidates should check the question paper to Ensure that all the pages are printed as indicated and no questions are missing

1. Give the name and formula of;	
(i) A complex cation containing a transition metal	(1mark)
(ii) A complex anion containing a transition metal	(1mark)

2. The diagram below shows a set up of apparatus used to prepare oxygen gas and pass it over burning candle. The experiment was allowed to run for several minutes.

(b). Given that

$\Delta H_1 = +434 \text{ KJ/Mol}$	
$\Delta H_2 = +371 \text{ KJ/Mol}$	
$\Delta H_3 = +483 \text{ KJ/Mol}$	
$\Delta H_4 = -781 \text{ KJ}/\text{Mol}$	
Calculate the enthalpy change (Δ H) for the reaction.	$(1\frac{1}{2} \text{ mks})$
$Na_{(s)} + \frac{1}{2} Cl_{2(g)}$ NaCl _(s)	

•••	•••	•••	•••	•••	•••	•••	•••	•••	••	•••	•••	•••	•••	•••	••	••	•••	•••	•••	•••	••	•••	•••	•••	•••	•••	••	•••	•••	••	••	•••	••	•••	••	•••	•••	••	•••	•••	•••	••	••	••	•••	••	•••	•••	
•••	•••	•••	•••	•••	•••	•••	•••	•••	••	•••	•••	•••	•••	••	••	••	•••	•••	•••	•••	•••	••	••	•••	•••	•••	••	•••		••	••	•••	••	•••	••	•••	•••	••	•••	••	•••	••	••	•••	•••	••	•••	•••	•
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••		•••	•••	••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••		••	•••		••	•••	•••	•••	•••	••	••	•••	•••	•••	•••	•••		•••	•••	•••	•

i) On the diagram above, using arrows, show the direction of flow of electrons. (1mk)ii) Identify the syringe in which oxygen gas would be collected. (1mk)

.....

iii) State and explain the change of magnesium chloride concentration at the end of the experiment. (1 ¹/₂ mks)

.....

9. Study flow chat below and answer the questions that follow.

10. The table below shows the standard reduction potentials for four half-cells. Study it and

answer the questions that follow (letter are not the actual symbols for the elements) E^{θ} (Volts)

					= (volts)	
	$F_{2(aq)}$ +	2 e	>	2F-(aq)	+0.54	
	$G^{2+}{}_{(aq)}$ +	2e	>	G _(s)	-0.44	
	${ m H}^{2+}_{({ m aq})}$ +	2e		H _(s)	+0.34	
	$2J^+_{(aq)}$ +	2e	\longrightarrow	$J_{2(g)}$	0.00	
i. I	dentify the stronges	st reduci	ng agent.			(1mark)
•••••						
•••••						
ii. V	Write the equation f	for the re	eaction which	takes place whe	n solid G is added to	a solution
С	containing H ²⁺ ions.				(1	mark)

iii. Calculate the E^0 value for the reaction in (ii) above.	(1mark)

11. (a) State the Charles' law.	(1mark)
(b) A certain mass of gas occupies 146dm ³ at 291K and 98.31kPa.	What will be its temperature
if its volume is reduced to 133dm ³ at 101.325 kPa?	(2 marks)
12. Below is the structure of a monomer used in polymerization. CN Cl	
C	
= C	
a) Draw the structure of part of the polymer involving 3 units.	(1mk)
b) What type of polymerisation takes place?	(1mk)
c) Give one advantage of artificial fibres over natural ones.	(1mk)
13. 20.0cm ³ of NaOH solution containing 8.0gdm ⁻³ were required for of 0.118g of a dibasic acid. Calculate the Relative Molecular Ma	or complete neutralization ass (R.M.M) of the acid.
(Na=23, O=16, H=1)	(3mks)
DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.	СОМ

.....

14. The table below shows the results obtained when a current of 2 amperes is passed through copper II sulphate solution for 15 minutes.

Initial mass of cathode	1.0g
Final mass on cathode	1.60g
Change in mass at the cathode	0.60g

Calculate the quantity of electricity required to deposit one mole of copper (Cu= 63.5) (2mks)

15. The following equation shows a reversible reaction.

$$H_{2(g)} + Br_{2(g)} \qquad \Delta H = -74.4kJ$$

colourless

(a). State and explain the observation that can be made when:-(i). Temperature is increased. $(1\frac{1}{2}mks)$ (ii).Pressure is reduced. $(1\frac{1}{2}mks)$ 16. You are provided with: A clean metallic spatula Distilled water Lead (II) nitrate solution Source of heat A rack of test – tubes A white solid suspected to be sodium chloride Required Draft a procedure you would use to enable you test and confirm that the white solid is a chloride compound. (3mks)

Test	Observation	Inference

17. Sulphur is one of the elements with varying oxidation States(a) What is oxidation state?	(1mk)
	••••
(b) Determine the oxidation state of sulphur in SO_3^{2-}	(1mk)
	•••••
(c) Give the electron pattern of sulphur in SO_3^{2-}	(1mk)
	••••
18. When fuels burn in the internal combustion engine at high temperature, one of the products formed is nitrogen (II) oxide.	
(a) Write the equation for the formation of nitrogen (II) oxide.	(1 mark)
(b) Give a reason why nitrogen (II) oxide is not formed at room temperature.	 (1mark)
(c) Describe how formation of nitrogen (II) oxide in the internal combustion engine le	ads
DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM	

to gaseous pollution?	(1 r	nar	rk)	
	••••	••••	••••	•
	••••	•••	• • • • •	

		1	, incons o		mentoj						7
					1				a		_
						A		В	C		
	D		-		E	F			G		-
						1			Ŭ		
									Н		
a) Wh	ich is th	ne most	reactive	non-met	al? Exr	lain					(1 mark)
	·····										(1 mark)
b) Nor	 ma tha l	hond ty	na forma	d whon i	alamant	A and	P rooot	Evolo			(1 mortz)
U) INA					element	A allu		. Expia			(1 IIIaik)
•••••	•••••	• • • • • • • • • • •					•••••		••••		
c) G	iving a	reason	compare	the atom	nic radi	us of ele	ement I) and E	•		(1mark)
•••••	•••••	• • • • • • • • • •		•••••	• • • • • • • • • •	•••••	•••••	•••••	•••••	• • • • • • • • •	
•••••		• • • • • • • • • • •		•••••		••••••	•••••	•••••	•••••		
20.Use	e the star	ndard en	thalpies of	f combus	tion giv	en below	to calc	ulate the	e enthalj	by of fo	rmation of
eth	ane.	`			20			A T T	20412:	• • 1 -1	
	$C_{(s)} + C_{(s)} + C_{($	$O_{2(g)}$		→	$H_2O_{(1)}$			$\Delta \Pi_{\rm C} = 0$ $\Delta H_{\rm C} = 0$	-286Kii	nol^{-1}	
	$C_2H_{6(g)}$	$0^{2(g)}$ + 5 $0^{2(g)}$)		$CO_{2(g)} +$	$3H_2O_{)l}$		$\Delta H_c = -1$	200Kjr	nol ⁻¹	(2 ½ mks)
		, e	,		.0/	,,			5		· · · ·
•••••	•••••	• • • • • • • • • •		•••••	•••••	•••••	•••••	•••••	•••••		
•••••					•••••	•••••	•••••		•••••		
•••••											
21. Describe how a solid sample of Lead (II) Sulphate would be prepared using the following											
reagen	nts. Dilu	te Sulp	huric (VI) acid, N	Nitric (N	/) acid,	solid le	ad (II)	Carbon	ate.	(3marks)
•••••	•••••	• • • • • • • • • • •	• • • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • •	••••	• • • • • • • • • • •	••••		
•••••	•••••	• • • • • • • • • • •	• • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••		
DOWNL	LOAD M	ORE RE	SOURCES	LIKE TH	his on]	ECOL	EBO	OKS.	COM	[

19. Use part of the periodic table grid below to answer questions that follow. (Letters do not represent actual symbols of the elements)

a.	Identify			
	i.	Solid X		(½ mk)
	ii.	Process W		(½ mk)
b.	Write an	equation for the reaction	in step II.	(1mk)
с.	Explain v	vhy Copper is suitable in	making soldering equipment.	(1mk)
•••••				
 23. The ta	able below	gives the rate of decay fo	or a sample of radioactive eleme	nt P.
23. The ta	able below ;	gives the rate of decay fo Mass of P(g)	or a sample of radioactive eleme Number of days	nt P
23. The ta	able below ;	gives the rate of decay fo Mass of P(g) 48	or a sample of radioactive eleme Number of days 0	nt P
23. The ta	able below ;	gives the rate of decay fo Mass of P(g) 48 18	or a sample of radioactive eleme Number of days 0 90	nt P
23. The ta	able below ;	gives the rate of decay fo Mass of P(g) 48 18 6	or a sample of radioactive eleme Number of days 0 90 180	<u>nt P.</u>
23. The ta	able below ; a) Deter	gives the rate of decay fo Mass of P(g) 48 18 6 mine its half-life	or a sample of radioactive eleme Number of days 0 90 180	<u>nt P.</u> (1mk)
23. The ta	able below ; a) Deter	gives the rate of decay fo Mass of P(g) 48 18 6 mine its half-life	or a sample of radioactive eleme Number of days 0 90 180	<u>nt P.</u> (1mk)

(ii) Mg₃N₂

(1¹/₂ mark)

26. A sample of carbon (II) oxide gas was passed through hot iron (III) oxide in a combustion tube P.

(i) State the observation made in Tube P .	(1 mark)

(ii) Write a chemical equation for the reaction that took place in **Tube P**. (1 mark)

.....

- 27. A student performed three experiments on the reaction of magnesium with dilute hydrochloric acid and collected the hydrogen gas evolved for each experiment.
- (i) **Experiment I:** Reacted 2g of magnesium ribbon with 1M hydrochloric acid.
- (ii) **Experiment II:** Reacted 2g of magnesium powder with 1M hydrochloric acid
- (iii) **Experiment III:** Reacted 2g of magnesium ribbon with 0.5M hydrochloric acid On the grid **below** sketch the graphs for each of the three experiments performed. (3mks)

28. In the manufacture of sodium carbonate by solvay process, ammoniated brine trickles down the carbonator while carbon (IV) oxide rises up the same tower.
a) What is ammoniated brine? (1/2 mk)
b) What is the main source of carbon (IV) oxide in the above process? (1/2 mk)

c) Write two equations for the reactions in the carbonator (2 mks)

.....

29. The table below shows the solubility of a salt at various temperatures.

Temperature ⁰ C	Solubility (g/100g water)
0	36

40	30
80	25
100	22
120	20

on. (1 mark)	Define the term Fractional Crystallization.	(a)
was heated to 100 ⁰ C. State and explain (1mark)	A saturated solution of the salt at 40 ⁰ C was the observation made.	(b)
a saturated solution of the salt at 0 ⁰ C is C. (1 mark)	Calculate the mass of salt formed when a s place in a water bath maintained at 100°C.	(c)

CHEMISTRY P1 MARKING SCHEME

- 1. (i) $[Zn(NH_3)_4]^{2+1} \sqrt{1}$ / Tetraamine zinc (II) ions (ii) $[Zn(OH)_4]^{2-1} \sqrt{1}$ /Zincate ion 2. i. water//H₂O ii. $2Na_2O_2(aq) + 2H_2O(l) \longrightarrow 4NaOH(aq) + O_2(g)$ iii. Carbon (IV) oxide formed from burning candle dissolved in the water to form a weak carbonic acid (pH less than 7). 3. Mass of hydrated salt 305 - 300 = 3g= = = Mass of anhydrous salt 303.2 - 300 = 3.2g Mass of water of crystallization= 5-3.2 = 1.8g $CuSO_4$: H_2O 3.2 1.8 159.5 18 Formula: CuSO₄. 5H₂O 0.1 0.02 5 1 4. a) i. Soapy ii. Soapless b) Is non-biodegradable thus environmental pollutant 5. a) ΔH_1 Atomization energy of Na ΔH_2 Ionization energy for Na ΔH_4 Lattice energy b) $\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4$ =434 + 371 + 483 + -781= 507 kJ/mole6. Acid: H_3O^+ Reason: it donates a proton (H^+) to NH_3 to form NH_4^+ Reason: accepts the donated H⁺ Base: NH₃ 7. (a) It is amphoteric $\sqrt{1}$ (b) Lead ion $\sqrt{1}$ // Pb²⁺ (c) $Pb(OH)_2(aq) + 4OH^-(aq) \longrightarrow [Pb(OH)_4]^{2-}(aq)\sqrt{1}$ 8. (i) from left right _____ Syringe 1 (ii) (iii) - Concentration increases - In electrolysis of dilute MgCl₂, Hydrogen and Oxygen are discharged (H₂ O) //equivalent to discharge of water molecules 9. (i) $Na_2CO_{3(s)} + Cu(NO3)_{2(aq)} \downarrow \downarrow \downarrow \downarrow \downarrow \rightarrow CuCO_{3(s)} + 2NaNO_{3(aq)} \checkmark 1$ (ii) Blue precipitate formed \checkmark 1/2 which dissolve to give deep blue solution. \checkmark 1/2 10. (i) G ✓1 (ii) $G(s) + H^{2+}(aq) \rightarrow G^{2+}(aq) + H(s) \checkmark 1$
- =+0.34 –(-0.44) \checkmark 1 Download more resources like this on ECOLEBOOKS.COM

(iii) $E_{red} - E_{ox}$

 $= 0.78 V \checkmark 1$

11. (a)Volume of a fixed mass of an gas is directly proportional to its absolute temperature provided pressure is kept constant

```
=P_2V_2\sqrt{1/2}
    (b)
           P_1V_1
                              T_2
             T_1
                                   = <u>101.325 X 133</u>\sqrt{\frac{1}{2}}
             98.31 X 146
                  291
                                            T_2
             T_2 = 101.325 \text{ x} 133 \text{ x} 291
                     98.31 x 146
             = 3921581.475\sqrt{\frac{1}{2}}
                  14353.26
                =273.2 \text{K} \sqrt{\frac{1}{2}}
12. (a).
    CN CI CN CI CN CI
      \downarrow C \downarrow \checkmark 1
                        CH<sub>3</sub> H CH<sub>3</sub>
                      H CH<sub>3</sub> H
    (b)
             Addition √ 1
             -Cheaper ✓1
    c)
             - Not easily attacked by chemicals
             - Do not Grease
             - Are lighter
             - Dry faster.
13. molarity of NaOH = 8/40
               =0.2 M \sqrt{1}
    Moles of NaOH = 0.2 \times 20
                           1000
               = 0.004 moles \sqrt{1}
    Moles of acid =0.002 moles
             RMM =0.118/0.002
                      =56\sqrt{1}
                      Cu^{2+}(aq) + 2e \longrightarrow
14. Equation:
                                                         Cu(s)
             1 mole (63.5g) Cu is discharged by 2 x96500 C
                        0.6g will be discharged by
             0.6 X 2 X96500
                    63.5
             =1823.622 C
```

15. (i) Forward reaction is exothermic, thus increase in temperature shifts equilibrium to the left (backward reaction favoured) increasing the intensity of the red-brown colour of Br₂ gas.

(ii) The ratio of volumes of reactants to products is 1:1 therefore, decrease in pressure will have no effect on the equilibrium state of the reaction

1	~
	6.
	•••

Test	Observation	Inference
Put less than half spatula end-full of the white solid in a test tube. Add about 5ml of distilled water and shake thoroughly.	White solid dissolves to form a colourless solution	-Soluble substance. -coloured ions absent; Cu ²⁺ , Fe ²⁺ , and Fe ³⁺
To a small portion of solution formed above, add 3 drops of lead (II) nitrate solution. Warm the mixture and allow it to cool	White precipitate on addition of lead (II) nitrate which dissolves on warming and reappears on cooling	Cl ⁻ confirmed present

17. a) A number showing a charge a species has in a compound or valency of an element or ion bearing the charge.

b) S + 3(-2) = -2 S - 6 = -2 S = +4c) S^{+4} has electron pattern 2.82

18. (a) $N_{2}(g) + O_{2}(g) \longrightarrow 2NO(g)\sqrt{1}$

(b) a lot of heat is required to break the triple bonds between the nitrogen atoms $\checkmark 01$ (c) NO is readily oxidized to form nitrogen(IV)oxide which is responsible for acid rain $\checkmark 01$

19. a) C ; it is the most electronegative//it easily gain electrons// has smallest atomic radius b) Covalent bond. They react by sharing valence electrons

c) E has smaller atomic radius than D. Across the period, nuclear force of attraction increases leading a stronger pull on the energy levels reducing overall size.

20.

- 21. React lead (II) carbonate in excess $\sqrt{\frac{1}{2}}$ with dilute nitric acid until effervescence stops, $\sqrt{\frac{1}{2}}$ filter $\sqrt{\frac{1}{2}}$ out the unreacted carbonate. To the filtrate add dilute sulphuric acid $\sqrt{\frac{1}{2}}$ to precipitate out lead sulphate, filter the mixture to obtain residue $\sqrt{\frac{1}{2}}$, wash with distilled water and dry $\sqrt{\frac{1}{2}}$ between filter papers
- 22. a) i. Solid X: Iron silicate// FeSiO₃

ii. Process W: Electrolysis

b) $2CuFS_2(s) + 4O_2(g)$ Cu₂S (s) + 2FeO(s) + 3SO₃(g) c) Copper has very high thermal conductivity

Workability $\sqrt{1}$ mk

25. Eletronic Structures

Time

- 28. (a). Sodium chloride saturated with Ammonia $\sqrt{\frac{1}{2}}$
 - b) Heating limestone/calcium carbonate ✓ ¹/₂
 - c) I. $NH_{3(aq)} + CO_{3(aq)} + H_2O_{(1)}$ II. $NH_4HCO_{3(aq)} + NaCl_{(aq)}$ \longrightarrow $NH_4HCO_{3(aq)} \checkmark 1$ $NH_4Cl_{(aq)} + NaHCO_{3(s)} \checkmark 1$
- **29.** a) Separation of salts in a mixture due to difference in their solubilities at different temperatures

b) Some crystals of the salt were deposited. The solublity of this salt decreased with increase in temperature

c) Mass deposited 36 - 20 = 16g