

GOLDEN ELITE EXAMINTIONS 2020

Kenya Certificate of Secondary Education

233/2**CHEMISTRY** PAPER 2 THEORY

MARKING SCHEME

Question one

- (a) A (\sqrt{lmk}) elements in group (vi) have 6 electrons in the outermost energy level, they react by gaining 2 electrons. $\sqrt{1mk}$
- (b) Amphoteric Oxide $\sqrt{1}mk$
- (c) Element E is more reactive than H (\sqrt{lmk}) Elements E and H are non metals in group (VII) and reactivity decreases down the group \sqrt{lmk} / E is smaller than H and hence has a higher electron affinity therefore more reactive.
- (d) $B_{(s)} + Cl_{2(g)}BCl_{2(s)}$ *lmk*
- (e) (i) The atomic radius of element F is greater than that of G $\sqrt{1mk}$ / Across period number of protons (nuclear charge increases increasing effective nuclear charge.
 - (ii) The atomic radius of element G is greater than that of B. $\sqrt{1mk}$
- (f) Solution of oxide of B changes red litmus paper blue and has no effect on blue litmus paper *1mk* while solution of oxide of D changes blue litmus paper red and has no effect on red litmus paper. *1mk*

(g) 2IOH (aq) + H_2SO_4 (aq) - \rightarrow I₂SO₄(aq) + 2H₂O(1) $\sqrt{1mk}$ 2 • 1 → 17.5 x0.5 = 0.00875 moles $\sqrt{\frac{1}{2}} mk$ Moles of H₂SO₄ 1000 $0.00875 \div 2 = 0.004375$ moles $\sqrt{\frac{1}{2}} mk$ Moles of IOH Molarity of IOH = 1,000 x 0.004375 20 0.21875M √*1mk* = 0.21875 moles/litre $\sqrt{l/2} mk$ Concentration =

Question Two

- (a) Heating copper (ii) oxide $\sqrt{1}mk$ (b) Black solid would turn brown $\sqrt{1}mk$
- $\sqrt{l} \frac{1}{2} mk$
- (c) $\operatorname{CuO}_{(s)} + \operatorname{CO}_{(g)} \longrightarrow \operatorname{Cu}_{(s)} + \operatorname{Co}_{2(g)}$ (d) $2\operatorname{CO}_{(g)} + \operatorname{O}_{2(g)} \longrightarrow 2\operatorname{CO}_{2(g)} \sqrt{1 \frac{1}{2}} mk$
- (e) It is poisonous $\sqrt{1}mk$
- (f) (i) Reducing agent Carbon(ii) oxide \sqrt{lmk}

(ii) Oxidisingagent -Copper (ii) oxide

(g) Hydrogen / ammonia gas (Any one) (h) There would be no observable change $\sqrt{1mk}$. This is because sodium is higher than carbon in the reactivity series and therefore has higher affinity of oxygen $\sqrt{1}mk$ **Question three** a) (i) Crystalline forms of sulphur $\sqrt{1mk}$ Or Existence of sulphur in more than one form in the same physical state. $\sqrt{1mk}$ $\sqrt{1}mk$ (ii) Transition temperature b) (i) X - dilution chamber $\sqrt{1} \frac{1}{2} mk$ Y- Heat exchanger $\sqrt{1} \frac{1}{2} mk$ $\sqrt{1} \frac{1}{2} mk$ Z - Burner (ii) Vandalism (v) catalyst $\sqrt{1} \frac{1}{2} mk$ Temperature -500° C $\sqrt{1} \frac{1}{2} mk$ $\sqrt{1} \frac{1}{2} mk$ Pressure - 200atm(iii)I – To remove dust particles and water vapour that could otherwise poison the catalyst \sqrt{lmk} II- Lose heat and pre-heat incoming gases $\sqrt{1mk}$ $\sqrt{1}mk$ (iv)Step 2; $2SO_{2(g)} + O_{2(g)}$ $\rightarrow 2SO_{3(g)}$ \longrightarrow H₂S₂O_{7 (l)} $\sqrt{1mk}$ Step 3: $SO_{3(g)} + H_2SO_{4(l)}$ $\sqrt{1}mk$ \rightarrow 2 H₂SO₄₍₁₎ Step 4: $H_2S_2O_{7(1)} + H_2O_{(1)}$ \longrightarrow H₂S₂O₇₍₁₎ $\sqrt{\frac{1}{2}} mk$ (v) $H_2SO_{4(1)} + SO_{3(g)}$ 1 1 : 1 : 1 mole of oleum = 178,000 = 1,000 moles 178 1 mole at s.t.p =22.4L $\sqrt{\frac{1}{2}} mk$ 1.000 moles = ? = 1000 x 22.4 = 22,400 litres $\sqrt{1mk}$ **Question Four** a) (i) Nitrogen $\sqrt{1} \frac{1}{2} mk$ and Hydrogen $\sqrt{1} \frac{1}{2} mk$ (ii) Platinum \sqrt{lmk} $6H_2O_{(g)}\sqrt{lmk}$ (iii) $4 \text{ NH}_{3(g)} + 5O_{2(g)}$ platinum $4NO_{(g)} +$ (iv) Neutralization reaction $\sqrt{1}mk$ (v) $S_{(s)} + 6 HNO_{3(1)} \longrightarrow H_2SO_{4(1)} + 6NO_{2(g)} + 2H_2O_{(1)}\sqrt{1mk}$

 $\sqrt{1}mk$

 $\sqrt{1}mk$

(vi) Any metal above copper in the reactivity series but below sodium \sqrt{lmk}

(vii) (a) I $- J - NH_4NO_3$

(ii) Molar mass of NH₄ NO₃= 28 + 4 + 48 = 80g $\sqrt{1mk}$

80g contain 28g of Nitrogen

 $\begin{array}{rcl} ? & = & 14g \\ 1 & \\ = \underline{14 \times 80} & = & 40g\sqrt{1mk} \end{array}$

(b) It is less soluble and therefore not easily leached √*1mk* Or
It provides the plant with nitrogen and phosphorous *any one*

Question five

-28-2

- a) Concentrated sulphuric (vi) acid $\sqrt{1mk}$
- b) It is denser than air \sqrt{lmk}
- c) It turns red then white. $\sqrt{1mk}$ It turns white / it gets bleached $\sqrt{1mk}$

d) $Cl_{2(g)} + H_2O_{(l)} \longrightarrow HOCl_{(aq)} + HCl_{(aq)} \sqrt{1mk}$

- e) PCl₃ \sqrt{lmk} PCl₅ \sqrt{lmk}
- f) A yellow deposit of sulphur is formed / seen $\sqrt{1mk}$ Chlorine oxidizes sulphideions to solid sulphur $\sqrt{1mk}$

g)

- Manufacture of hydrochloric acid

$\sqrt{1}mk$

- Manufacture of bleaching agents such as chlorate used in the cotton and paper industries
- Chlorine is used in the treatment of water and sewage plants
- Manufacture of chloroform as an anaesthetic
- Manufacture of solvents such as trichloroethane

Question six

Any	one
~	

a)	А	- Filtration	$\sqrt{1} \frac{1}{2} mk$
	В	- Absorption	$\sqrt{1} \frac{1}{2} mk$
	Μ	- Isolation of water	$\sqrt{1} \frac{1}{2} mk$
	D	- Cooling	$\sqrt{1} \frac{1}{2} mk$
b)	Lic	uids – NaOH (aq) / KOH (aq	$)\sqrt{lmk}$

- Substance T Ice / water $\sqrt{1mk}$
- c) To increase surface area forcooling $\sqrt{1} mk$
- d) (i) Oxygen is used to remove impurities during steel making $\sqrt{1} mk$
- (ii) Is used in cutting and welding of metals $\sqrt{1} mk$
- e) $2H_2O_{2(1)}$ <u>MnO₂(s)</u> $2H_2O_{(1)}+$ $O_{2(g)}$ $\sqrt{1} mk$

