NAME	 DATE	•••••
INDEX NO.	 SIGNATURE	
233/2		

CHEMISTRY
PAPER 2
(THEORY)
TIME: 2 HOURS.

GOLDEN ELITE EXAMINTIONS 2020

Kenya Certificate of Secondary Education

233/2 CHEMISTRY PAPER 2 (THEORY) TIME: 2HOURS.

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided above.
- O Sign and write the date of exam in the spaces provided above.
- Answer ALL the questions in the spaces provided.
- o Mathematical tables and silent electronic calculators may be used.
- o All working **MUST** be clearly shown where necessary.

FOR EXAMINER'S USE ONLY

Questions	Maximum score	Candidates score
1	13	
2	11	
3	13	
4	10	
5	10	
6	12	
7	11	
Total score	80	

2marks

1. The grid below shows part of the periodic table. Study it and answer the questions that follow. The letters do not represent the true symbols of the elements.

		-	•				
					A		
I	В		С	D		Е	
F	G					Н	

a)	Which element forms an ion of charge - 2? Explain your answer	2marks
		•••••
b)	What is the nature of the oxide formed by element C?	1mark
c)	How does the reactivity of H compare with that of E? Explain.	2marks
d)	Write the chemical equation for the reaction between B and chlorine?	1mark
		•••••
e) i)	Explain how the atomic radii of the following compare; F and G	2marks
ii)	B and G	
f)	The oxides of B and D are separately dissolved in water. State the effect of each product or	litmus paper.

g)	20cm³ of a solution of a hydroxide of I completely neutralizes 17.5cm³ of 0.5M sulphuric Calculate the concentration in moles/litre of solution of the hydroxide of I	e (VI) acid. 3marks
2.	The diagram below shows an experiment set-up to investigate a property of carbon (ii) oxi and answer the questions that follow. Combustion Carbon (ii) oxide Blue flame of gas x	de. Study it
a)	Name one condition that is missing in the set up that must be present if the experiment to produce	1mark
b)	If the experiment was carried out properly. What observation would be made in the combu	istion tube? 1mark
c)	Give an equation for the reaction that occurs in the combustion tube.	 1 ½ mark

Step 2

SO_{3 (g)}

d)	Give an equation for the reaction that takes place as gas x burns.	1 ½ marks
e)	Why is it necessary to burn gas x?	1mk
		•••••
f) (i)	Name the reducing and oxidizing agent. Reducing agent	2marks
(ii)	Oxidising agent	
g)	Identify any other substance that would have the same effect on copper (ii) oxide as car	bon (ii) oxide. 1mark
h)	What would happen if copper (ii) oxide was replaced with sodium oxide? Explain	2mark
	a) Sulphur occurs naturally in two different forms called allotropes; What are allotropes?	1mark
(ii)	The two allotropes of sulphur are stable at different temperatures, as shown in the equation	below.
	Above 95.5 ⁰ C	
	Rhombic sulphur Below 95.5°C	
	Give a name to the temperature 95.5°C	1mark
b) l	Below is a flow chart diagram for the contact process for the manufacture of sulphuric (VI)	acid.
Ī	Subdur SO	so _{3 (g)}

Drying

precipitation

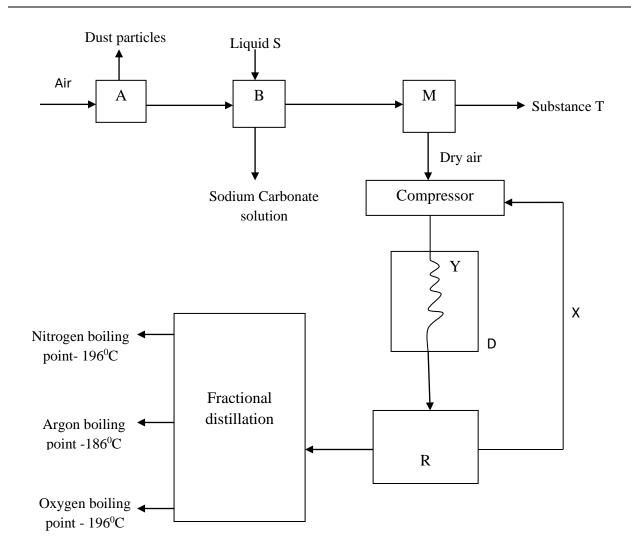
3marks

(i)	Give the name of chambers labeled X	1 ½ mark
	Y	
	Z	
(ii)) State the three conditions in the converter.	1 ½ mark
(iii	i)Explain why gases are passed through; I – The dust precipitator and drying power	2marks
	II- The chamber labeled Y	
(iv	Write the balanced equations for the reactions in; Step 2:	3marks
	Step 3:	
	Step 4:	
c)	Calculate the volume of sulphur (VI) oxide gas in litres that would be requir	red to produce 178kg of

DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**

Oleum in step 3. (Molar gas volume at s.t.p.=22.4l, H=1, O=16, S=32)

	shows vario	ous reactions starting	with ammonia. St	udy it and answer the questic
 ompound J		Ammonia (i) O _{2(g)} + STEP I (ii) Wate Nitric (v) acid	+ catalyst	Aqueous sodium nitrate
CuO	Heat Step IV	Cu _(S) Solution K	S (S) STEP	Brown fumes
H _{2(g)} Brown Solid L			-	
		manufacturer of ami		1mark
at catalyst is used				1mark
e an equation for				oxygen gas in the presence of 1mark
		•••••		


(v)	Using an appropriate equation, explain how the reaction in step III occurs	(1 mark)
(vi) What should be added to solution K to form solid L?	(1 mark)
(vi ₂) I. Write the formula of compound J.	
II.	Calculate the mass of compound J that would contain 14g of nitrogen. (N=14, O=16, H= 1)	
b)	Explain the advantage of using ammonium phosphate fertilizer over the other nitrogenous fe	(1mark)
5.	Dry chlorine was collected using the set up below. Moist blue litmus paper	
a)	Name a suitable drying agent for chlorine gas?	1mark
b)	State one property of chlorine gas which facilitates this method of collection.	1mark
		•••••

c)	State the observations on the moist blue litmus paper.	2marks
d)	Chlorine gas was bubbled through distilled water. With aid of an equation show the formation chlorine water.	n of 1mark
e)	Write the formula of the compounds formed when chlorine gas reacts with warm dry phospho	orous. 2marks
f)	Chlorine gas is mixed with moist hydrogen sulphide gas, state and explain the observations	
g)	Give one use of chlorine gas.	1mark

6. Fractional distillation of air is used in the industrial manufacture of oxygen. The diagram below shows the process.

a)	What processes are taking place in chamber A,B,M and D A	2marks
	В	
	M	
	D	
b)	Name;	
	(i) Liquid S	
DO	DWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM	

	(ii) Substance T	
c)	Explain why part Y in chamber D is curved?	1mark
d)	Give two industrial uses of oxygen gas?	2marks
e)	In the laboratory preparation of oxygen, manganese (iv) oxide and hydrogen peroxide are t equation to show how oxygen gas is formed.	sed. Write an
f)	An investigation was carried out using the set-up below. Study it and answer the questions to R	hat follow.
	Air Nail Anhydrous calcium chloride Nail Nail	
(i)	State and explain what will happen in the three test-tubes R, S and T after seven days.	3marks
(ii)	Give one reason why some metals are electroplated.	1mark
7.	Below is a scheme of some reactions of propanol. Study it and answer the questions that fol Q Polymerisation Y HBr Z	low.
<u>DO</u>	Step II Conc. H ₂ SO ₄ Step I 160 ⁰ C Propanol CH ₃ CH ₂ CH ₂ OH EBOOKS CH ₃ CH ₂ CH ₃	

Step III

(a)	State the reagents and conditions required to effect step I	3marks
		• • • • • • • • • • • • • • • • • • • •
(b)	Draw the structural formulae and name product Z.	1mark
(c)	Name product Q	1mark
(d)	Explain how product Y can be distinguished from the product formed after step I has taken p	lace. 2marks
(e)	What name is given to the process in Step II and step III Step II	2marks
	Step III	• • • • • • • • • • • • • • • • • • • •
(f)	(i) Define the term hydrocarbon	1mark
	(ii) Draw the structure of 1, 2 – dibromopropane	 1mark