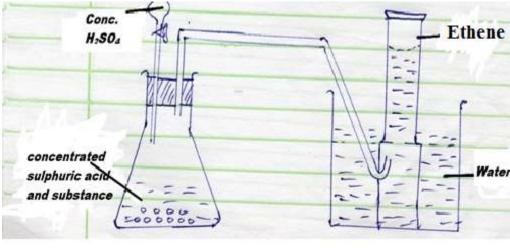


Name	Adm. No
Candidate's Signature	Date
233/2	
CHEMISTRY PAPER 2	
(Theory)	
March/April 2020	
2 hours	

ARISE AND SHINE TRIAL ONE EXAM MARCH/APRIL – 2020

Instructions to candidates


- (a) Write your name and index number in the spaces above
- (b) Sign and write the data
- (c) Answer all the questions in the spaces provided.
- (d) **KNEC** tables and non-programmable calculators may be used.
- (e) ALL working must be clearly shown where necessary
- (f) ALL answers MUST be written in English.

For Examiners Use Only

Question	Maximum Score	Candidates Score
1	12	
2	13	
3	12	
4	11	
5	10	
6	11	
7	11	
Total Score	80	

1.	(a). Crude oil is a source of many compounds that contain carbon and hydrogen only.(i). Name the process used to separate the components of crude oil. (1 mark)
	(ii). On what two physical properties of the above components does the separation depends. (2 marks)
•••	
(b) the	
:/ 1	products is C_3H_8 . Write the formula of the other product. (1mark)
1)	Write the formula of the other product. (1mark)
 (ii)	Describe a simple chemical test to show the difference between the two products formed in b(i) above (2 marks)
	. The set up below was used to prepare and collect ethene gas. Study it and answer the estions that follow
	Conc. LEthene

(i).Name the substance T. (1 mark)

(ii) Give the property of ethene that allows it to be collected as shown in the set-up above DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**

				(1 n	nark)
(d). On of the reaction underg polymer and one disadvantage			ization. Giv		e of the
Name:				•••••	(1 mark)
Disadvantage of the polym	er			• • • • • • • • • • • • • • • • • • • •	(1 mark)
2.(a) Name the method that ca (III) chloride and sodium chlo	ride.				(1 mark)
(b) A student was provided with characteristics of the three sub-	stances in the m	ixture are given in	the table be	elow.	(1 mark)
Substance	Solubility in	water		in ethano	
Sunflower flour	Insoluble		Insoluble		
Common salt	Soluble		Insoluble		
Solid red dye	Soluble		soluble		
The student was provided with student can separate the mixtu	re into its three	components.	•••••	(3 n	narks)
(c) The diagram shows part of of the elements. Use the diagram	-		-	nt the actua	
	//	<u> </u>			Q
R ////			T	***	
Z ////	N		V	W	
Y ////	/	Liamora than of S	<u> </u>	(2 n	a o ml r o)
(i) Explain why the Oxidi	zing power of v	v is more than of a	Χ.	(2 n	narks)
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			••••••
(ii) How do the melting p	oints of R and T	compare. Explair	1.	(2 n	narks)
(iii). Give the formula of the c	compounds form	ed between Z ad V	 W	(1m	ark)

					(1mark)
		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
 Jsing	dots (.) and cro	usses (x), show the	bonding between k	and hydrogen.	(1 mark)
SS	uots (t) unu ero	sses (n), snow ene	oonumg ootwoon r	r and my drogoni	(1)
		at coulf be used:-			
(I)) in weather ball	oons			(1 mark)
(II)). For making co	ooking pots.			(1 mark)
(II)). For making co	ooking pots.			(1 mark)
he flov	w chart below sh	hows some of the	processes involved lestions that follow.	in large scale pr	
he flov	w chart below sh (VI) acid. Use i	hows some of the t to answer the qu		in large scale pr Substance	oduction of
 The flow	w chart below sh (VI) acid. Use i	hows some of the			oduction of
The flow	w chart below sh (VI) acid. Use i	hows some of the t to answer the query (IV) oxide	Absorption	Substance	oduction of
Che flovohuric	w chart below sh (VI) acid. Use i	hows some of the t to answer the qu	estions that follow.		oduction of
 Γhe flov	w chart below sh (VI) acid. Use i Sulphun Reaction	hows some of the t to answer the query (IV) oxide	Absorption	Substance	oduction of

ÉcoleBooks

Ecolebooks.com

(c). Vanadium (v) oxide is a commonly used catalyst in the contact process.	(1 mark)
(i). Name another catalysts which can be used for this process.	(1 mark)
(ii). Give two reasons why vanadium (IV) oxide is the commonly used catalyst	(1 mark)
(d). State and explain the observation made which concentrated sulphuric (VI) ac crystals of copper (II) sulphate in the beaker.	id is added to (2 marks)
(e) The reactions of concentration sulphuric (VI) acid with sodium chloride produchloride gas. State three property of concentrated sulphuric (VI) acid illustrated in	nces hydrogen n this reaction. (1mark)
(f). Name four uses of sulphuric (VI) acid	(2 marks)
4.(a). What is meant by molar heat of combustion?	(1 mark)
(b). State the Hess's law	(1 mark)
(c). Use the standard enthalpies of combustion of graphite, hydrogen and enthalpy of propane to answer the questions that follow. $ \Delta H^o_c \text{ (Graphite)} = -393 \text{kJmol}^{-1} \\ \Delta H^o_c \text{ (CH}_{2(g)}) = -286 \text{kJmol}^{-1} \\ \Delta H^o_f \text{(C}_3 H_{8(g)}) = -104 \text{ kJmol}^{-1} $	y of formation
(i). Write the equation for the formation of propane.	(1 mark)

(ii). Draw an energy cycle diagram that links the heat of formation of propane with combustion of graphite and hydrogen.	h its heat of (3 marks)
(iii). Calculate the standard enthalpy of combustion of propane.	(2 marks)
(d). Other than the enthalpy of combustion, state one other factor which should be when choosing a fuel.	
(e). The molar enthalpies of neutralization of dilute hydrochloric acid and dilute n	
are -57.2kJmol ⁻¹ while that of ethanoic acid is -55.2kJ/mol. Explain this observation	
5.(a). At 25°C, 50g of potassium nitrate were added to 100g of water to make a sat	turated
solution. What is meant by a saturated solution?	(1 mark)
(b). The table below gives the solubilities of potassium nitrate at different tempera	ntures

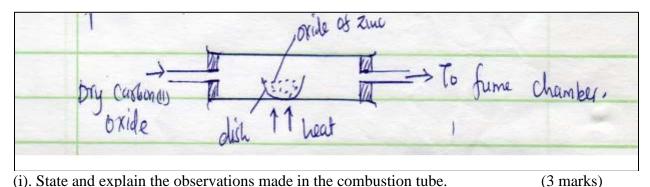
 Temperature (°C)
 12
 20
 28
 36
 44
 52

 Solubility g/100g of water
 22
 31
 42
 55
 70
 90

(i). Plot a graph of the solubility of potassium nitrate (vertical axis) against temperature.

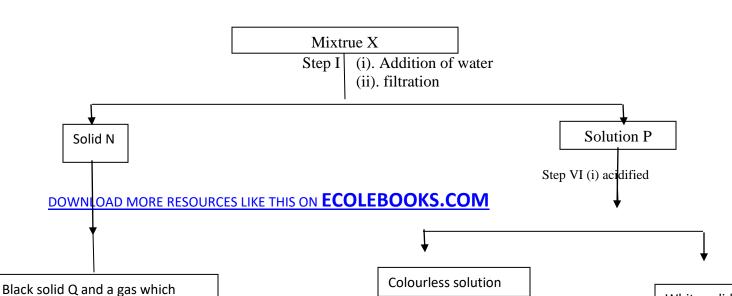
(3 marks)

(ii). Using the graph:



I.	Determine the solubility of potassium nitrate at 15°C.	(1 mark)
II.	Determine the mass of potassium nitrate that remained undissolved give potassium nitrate were added to 100cm ³ of water and warmed to 40°C.	en that 80g of (2 marks)
	ermine the molar concentration of potassium nitrate at 15°C	
	the there is no change in density of water at this temperature. (K=39, N=14	(3 marks)
6.a)(i). C	arbon (IV) oxide is present in soft drinks. State two roles of carbon (IV) oxide is present in soft drinks.	oxide. (1 mark)
(ii). Expl	ain the observation made when a bottle containing a soft drink is opened.	(2 marks)
the acid.	oon (IV). Oxide dissolves slightly in water to give acidic solution. Give the	(1 mark)
(i). Write	oxide can be obtained by heating zinc nitrate. A student heated 5.76g of z the equation or the reaction that occurred.	(1 mark)
	ulate the total volume of gases produced (Molar gas volume = 24dm ³ , Zn	

	 	 •
		•••••
•••••	 	 •••••


(c). Excess carbon (II) oxide gas was passed over a heated sample of an oxide of zinc as shown in the diagram below. Use it to answer the questions that follow.

- (i). State and explain the observations made in the combustion tube. (3 marks)

 (ii). Write an equation or the reaction which took place in the dish. (1 mark)
- 7. The flow chart below shows a sequence of reactions involving a mixture of two salts, mixture

X. Study it and answer the questions that follow.

Step II Heat		(i). acidified Ba(SO ₃₎₂ (ii) Filtration
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Step VII excess aqueous ammonia	ı
Step III Dilute Sulphuric (VI) acid		
Step IV Excess equeous Ammonia	Step V Magnesium powder	
(a). Write the formula of the fo	ollowing	(1 mark)
(ii). The two salts present in m	ixruew M.	(2 marks)
(b). Write an ionic equation for	r the reaction in step (VI).	(1mark)
(c).State and explain the obser	vations made in step (V)	(3 marks)

(d)(i). Starting with lead (II) oxide, describe how a pure solid sample of lead (II)	
prepared in the laboratory.	(2 marks)
(ii). How can one determine whether the lead (II) Sulphate prepared is pure?	(2 marks)