

MARKING SCHEME

CHEMISTRY PAPER 2 ARISE AND SHINE TRIAL 1 EXAM March/April-2020

1.(a)(i) Fractional distillation $\sqrt{1}$

Any two 1mk each

(ii) Molecular mass

- density

- Boiling points

(b)(i). $C_3H_6 \sqrt{1}$

(ii). Shake a sample with bromine water $\sqrt{1}$, C_3H^8 do not decolourize $\sqrt{1}$ C_3H_6 decolourize $\sqrt{1}$ OR use acidified potassium permanganate C_3H_8 do not decolourize C_3H_6 decolourize (Reject chlorine)

Or

Burn a sample of C₃H₈-burns with a non-luminous flame C₃H₆-burns with a luminous flame

Or

Use acidified potassium dichromate-C₃H₈ do not decolourize

-C₃H₆decolourize

- (d)(i). Ethanol $\sqrt{1/C_2H_5OH/CH_3CH_2OH} \sqrt{1}$
- (ii). slightly soluble in water/insoluble in water
- (d). Name-polythene/polyethen $\sqrt{1}$

Disadvantage-it is non-biodegradable poisonous gases when burn√ (Any one)

2.(a). Name the method that can be used to obtain pure iron (III) chloride from a mixture of iron (III) chloride and sodium chloride (1mark)

Sublimation $\sqrt{1}$

(b). A student was provided with a mixture of sunflower flour, common salt and a red dye. The characteristics of the three substances in the mixture are given in the able below.

Substance	Solubility in water	Solubility in ethanol
Sunflower flour	Insoluble	Insoluble
Common salt	Soluble	Insoluble
Solid red dye	soluble	soluble

The student was provided with ethanol and any other materials needed. Describe how the student can be separate the mixture into its three components. (3 marks)

Add ethanol $\sqrt{\frac{1}{2}}$

Filter √½

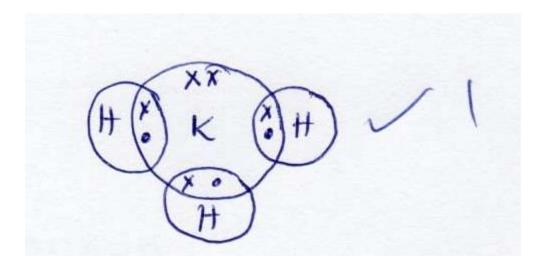
Evaporate $\sqrt{\frac{1}{2}}$

Add water $\sqrt{1/2}$

Filter √½

Evaporate 1/2

(c) The diagram shows part of the periodic table. The letters do not represent the actual symbols of the elements. Use the diagram to answer the questions that follow.


						Q
R			K √1	V	W	
	Z				X	
Y		N				

- (i). W has a shorter atomic radius than $X \sqrt{1}$
- W accepts electrons more readily than $X\sqrt{1}$
- W has less energy levels than X
- W has less screening effects than X Any two
- (ii). R has a higher m.p than \sqrt{T} .R has a giant metallic structure while T has a molecular structure/R has metallic bonds while R has eak $\sqrt{1}$ van der waals forces
- (iii). $-ZW_2 \sqrt{1}$ penalize use of equation

(iv).

(v).

- (i) O/He $\sqrt{1}$
- (ii) N/A $\sqrt{1}$

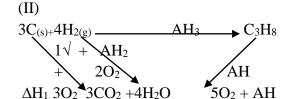
3(a). Purify to remove impurities $\frac{1}{2}\sqrt{\text{bubble through}} \frac{1}{2}\sqrt{\text{NaOH/KOH}}$ to remove CO₂,rduce the $\frac{1}{2}\sqrt{\text{temp,to remove water vapor compress to liquefy the residual air, then fractional distillation to obtain oxygen at -180°C$

- i) concentrated sulphuric (vi) acid $\sqrt{1}$
- ii) $SO_2(aq) + H_2SO_{4(1)} \longrightarrow H_2S_2O_{7(1)} \sqrt{1}$
- c). (i). Platinum $\sqrt{1}$
 - (ii). It is cheap/cheaper $\sqrt{\frac{1}{2}}$

Not easily poisoned/action stopped by impurities ½

- (d). Turns from blue to white. Forms white powder sulphuric (VI) $\sqrt{1}$ acid dehydrates copper (II) sulphate crystals/remove water of crystallization.
- e). It is less volatile $\sqrt{1}$
- (f). Manufacture of sulphate fertilizer/superphosphate fertilizer/production of Ray on making dyes/used in car batteries/As an electroly manufacture of sosaples detergents/cleaning of metals manufacture of pain HCL/HNO $_3$,Oleum. As a drying agent, as adehydrating agent/manufacture of nylon AL $_2$ SO $_4$ /ALCOH $_3$ /sulphate drugs, pigments Any four $_1$ /2 each
- 4(a). Energy change that occurs when one mole of a substance is completely burnt in oxygen $\sqrt{1}$ (b). The energy changes in converting reactants to $\sqrt{1}$

Products is the same regardless of the path in which the chemical changed occurs


 $\Delta H\theta C(Graphite) = -393kJ \text{ mol-}1$

DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**

$$\Delta$$
HC(H $\theta_2(g)$) = -286kJ mol-1
 Δ H $\theta f (C3H8(g)) = -104kJ mol - 1$

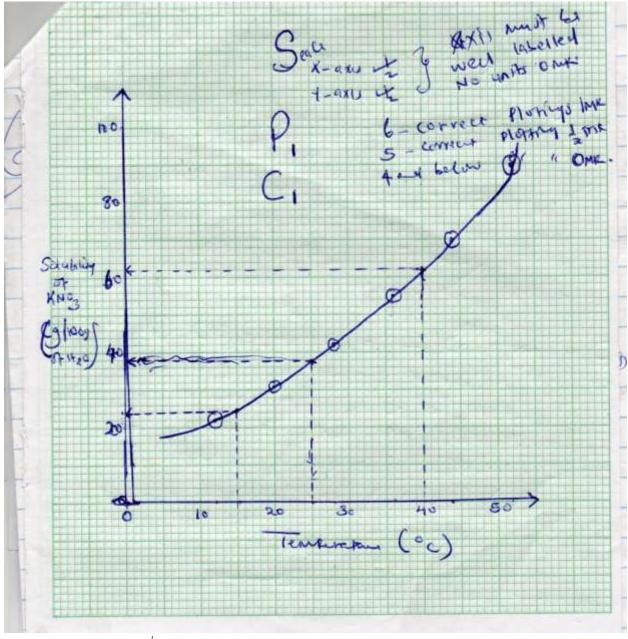
(a).
$$3C_{(s)} + H_{2(g)} C_3H_{8(g)} \sqrt{1}$$

(iii).
$$\Delta H_4 = \Delta H_1 + \Delta H_2 - \Delta H_3 \sqrt{1}$$
 $\Delta H_4 = -879 - 1144 + 1\sqrt{104}$ $\Delta H_4 = -1919 \text{kJmol}^{-1}$ Penalize ½ for wrong missing unit

- e). Dil HNO3 and HCl $\sqrt{1}$ ionize fully in water while ethanoic acid partially ionizes $\sqrt{1}$
- 5.(a). It is a solution which cannot dissolve any more solute at a particular temperature $\sqrt{1}$ (b)(i) I-24g/100g of water $\sqrt{1}$

II- mass dissolved=62g ½

- mass of undissolved =80-62=18g $\sqrt{1/2}$


c). RFM of KNO₃ =
$$39+14+16x3$$

= $101 \sqrt{\frac{1}{2}}$

Mole of KNO₃ at
$$18^{\circ}$$
c = $\underline{24}$ $\sqrt{\frac{1}{2}}$ =0.2376 $\sqrt{\frac{1}{2}}$ moles 101

Molarity =
$$\frac{\text{no of moles } \times 1000}{\text{Volume}} = 0.2376 \frac{\sqrt{1}/2}{2} \times \frac{1000 \sqrt{1}/2}{100}$$

$$= 2.376 \text{MKNO}_3 \sqrt{1}/2$$

- 6(a)(i) preservative $\sqrt{1/2}$
 - Add taste/flavor√½
- (ii). Effervescence occur $\sqrt{1}$
 - CO_2 was dissolved under pressure $\sqrt{1}$
- (iii). $H_2CO_3 \sqrt{1}$ penalize fully for an equation

(b)(i).
$$2zn(NO_3)_{2(s)}$$
 \longrightarrow $2ZnO(s) + 4NO_{2(g)} + O_{2(g)}$ penalize $\sqrt{\frac{1}{2}}$ for wrong /missing state Symbols

(ii).
$$\underline{5.76}$$
 x =0.03 $\sqrt{\frac{1}{2}}$ 188.5

Moles of
$$NO_2 = \frac{4 \times 0.03}{2} = 0.06\sqrt{\frac{1}{2}}$$

Moles of oxygen = $\frac{0.03 - 0.15\sqrt{\frac{1}{2}}}{2}$

Moles of oxygen =
$$\frac{0.03 - 0.15\sqrt{1/3}}{2}$$

Total moles =
$$(0.06 + 0.015) \sqrt{\frac{1}{2}} = 0.075$$

Volume of gases = $0.075 \sqrt{\frac{1}{2}} \times 24 = 1.8 \text{dm}^3$ penalize $\sqrt{\frac{1}{2}}$ for wrong or missing units

- c)(i). White solid $\sqrt{1}$ turns yellow on heating the yellow $\sqrt{1}$ solid turns grey because zinc oxide is reduce to $\sqrt{1}$ zinc
- (ii). $ZnO_{(s)} + CO_{(g)} \longrightarrow Zn_{(s)} + CO_{2(g)}$ -penalize $\sqrt{1/2}$ for missing/wrong state symbols Penalize fully if equation is not balanced

7(a)(i)
$$O^{2-} \sqrt{1}$$

(ii). CuCO₃ $\sqrt{1}$, ZnSO₄ $\sqrt{1}$

- (b) $Ba^{2+}(aq) + SO_4^2-(aq)$ _____BaSO_{4(s)} penalize a chemical Penalize $\sqrt{\frac{1}{2}}$ for missing wrong st. symbols
- c). solution change from blue to colourless/fede√1
 - a brown solid is formed $\sqrt{1}$ mg dissolves
 - discharged of Cu^{2+} because Mg displaced $\sqrt{1}Cu^{2+}$ from the solution
 - Apparatus become worn $\sqrt{\frac{1}{2}}$ is exothermic/heat given out
- d)(i) Add excess PbO to $\sqrt{\frac{1}{2}}$ the HNO₃ and filter $\sqrt{\frac{1}{2}}$ add soluble sulphate /sulphuric acid to the filtrate. Filter to obtain PbSO_{4(s)} then dry the residue between filter papers
- e)(i) determine mpt if its pure mpt is sharp