

Name	adm No:	••••••
233/3	Can	didate's Signature
CHEMISTRY	Date:	
Paper 3		
(Practical)		
TERM TWO		
Time: 2 1/4 Hours		
FORM THREE		

INSTRUCTIONS TO CANDIDATES

- Write your name and admission number in the spaces provided.
- Sign and write the date of examination in the spaces provided.
- Answer *all* the questions in the spaces provided in the question paper.
- You are not allowed to start working with the apparatus for the first 15 minutes of the 2 ¼ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus you need.
- All working must be clearly shown where necessary.
- Mathematical tables and electronic calculators may be used.

For examiners use only

Question	Maximum Score	Candidate's Score
1		
2		
TOTAL	40	

This paper consists of 5 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

1. You are provided with;

- Solution C which is solution of dibasic acid (COOH)₂ XH₂O containing 10.08g per litre of solution.
- Solution D which is 0.2M solution of sodium hydroxide. You are required to determine the value of X in the formula $(COOH)_2$. XH_2O

(H= 1, C = 12, O = 16)

\mathbf{p}_1	r۸	ce	d	111	re
	W	u.	ш		

- Fill the burette to the mark with solution C.

- Pipette 25.0cm³ of solution D into a clean conical flask
- Add two drops of phenolphthalein indicator and titrate with solution C.
- Repeat the titration to obtain consistent results and record your results in table 1 below.

 TABLE I 4mks

	I	II	III
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of acid used (cm ³)			

a)	Calculate the average volume of solution C used.	(1mark)
b)	Calculate the number of moles of D used.	(2marks)
•••••		
c)	Calculate the number of moles of C used given that the reacting ratio of acid (2marks)	d to base is 1:2
•••••		
d)	Calculate the concentration of acid solution C in moles per litre.	(2marks)
•••••		

ÉcoleBooks

Ecolebooks.com

e)	Calculate the relative formula mass of the acid $(COOH)_2 \times H_2$.	(2marks)

	f)	Hence, determine the value of X in $(COOH)_2$ X H_2O .		(2marks)
2.	You	are required to determine the enthalpy of displacement of	$\int Cu^{2+}{}_{(aq)}$ by Zinc.	
	Proc	<u>edure</u>		
	i)	Wrap the plastic beaker that has been provided with a	tissue paper.	
ii)	Place 50cm ³ of 0.2M Copper (II) Sulphate solution in	the beaker. Dip the therm	ometer in th
		solution and note the steady temperature of the solution	n.	
	iii)	Carefully transfer all the 1.0g of Zinc powder provided carefully with the thermometer.	l into the plastic beaker ar	nd stir
	iv)	Record the highest temperature that the solution attain		
	Reco	ord the results in the Table II below.	Table II.	
	Volum	one of Comman (II) Sylmhoto colution used (cm ³)		
		ne of Copper (II) Sulphate solution used (cm ³) est temperature of the mixture (⁰ C)		
		temperature of Copper (II) Sulphate Solution (⁰ C)		
		ge in temperature (⁰ C)		
		•	(2ma	rks)
		Specific heat capacity = 4.2kJKg ⁻¹ k ⁻¹	(21110	iks)
		Density of the solution = $1g/cm^3$		
		2 chairy of the continue 1g chi		
	a)	Calculate the number of moles of Cu ²⁺ ions that are in	50cm ³ of the solution.	(2marks)
				•••••
	b)	Calculate the amount of heat liberated in the reaction.		(2marks)
	•••••			
	•••••			•••••
	c)	Determine the enthalpy of displacement of Copper.		(2marks)

Ecolebooks.com ÉcoleBook

d)	Explain why excess Zinc powder was added into the beaker.	(1mark)

react	Write the ionic equation for the reion.	-	(2mark
You	have been provided with solid Q. Pe	form the tests below and identif	y ions present in the
i)	Put all the solid Q in a boiling tub	e and then add 8cm³ of distilled	water a little at a time v
shak	ing. Divide the solution formed into		
	Observation	Inference	
		(1mark)	(1mai
ii)	To the first portion add dilute sod	um hydroxide dropwise until in	excess.
11)	To the first portion and unute sou	um nydroxide dropwise until m	CACCSS.
	Observation	Inference	
		(1mark)	(1mai
iii)	To the second portion add ammor		cess.
	Observation	Inference	
		(1mark)	(1mai
		(Tillark)	(1ma
To th	ne third portion add dilute Hydrochlo	ric acid and then warm.	
	Observation	Inference	

v)To the fourth portion add 3 drops of Barium nitrate solution (NB keep the mixture for part (vi	i)

Observation	Inference
(1mark)	(1mark)

vi) Add 1cm³ of nitric (V) acid (HNO₃) to the mixture obtained in (v) above.

Observation	Inference
(1mark)	(1mark)

vii) To the fifth portion add 3 drop Lead (II) nitrate

Observation	Inference
(1mark)	(1mark)