

Name	Index number
School	Candidate's sign
233/2	
CHEMISTRY	
PAPER 2	
DECEMBER 2020	
TIME: 2 HOURS	

SUKELLEMO JOINT MOCK

Kenya Certificate of Secondary Education (K.C.S.E

INSTRUCTIONS TO THE CANDIDATES:

- Write your **name** and **index number** in the spaces provided above
- **Sign** and write the **date** of examination in the spaces provided.
- Answer *all* the questions in the spaces provided.
- All working **must** be clearly shown where necessary.
- Mathematical tables and electronic calculators can be used.

For Examiners Use Only

Question	Maximum score	Candidate's score
1	12	
2	12	
3	10	
4	10	
5	10	
6	14	
7	12	

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Total	80	

Answer all the questions in the spaces provided

1. (a) Study the standard electrode potential for the half-cells given below and answer the questions that follow. (*The letters do not represent the actual symbols of the elements*)

Half-cells			E ⁰ (Volts)
$N^{+}_{(aq)} + e^{-}$	\rightarrow	N (s)	-2.92
$J^{+}_{(aq)} \pm e^{-}$	\rightarrow	L _(a)	+ 0.52
$K^+_{(aq)} \pm e^-$	\rightarrow	¹ / ₂ K _{2(g)}	0.00
$^{-1}\sqrt{_{2}G_{2(g)}} + e^{-}$	\rightarrow	G-(aq)	+1.36
$M^{2+}_{(aq)} + 2e^{-}$	\rightarrow	$M_{(s)}$	-0.44

(i)	Identify the strongest reducing agent. Give a reason for your answer	`
(ii)	Which two half- cells would produce the highest potential differen	ce when
	combined?	(1 mark)
		• • • • • • • • • • • • • • • • • • • •
(iii)	Explain whetether the reaction represented below can take place. $2N^+_{(aq)}+M_{(s)} \ \to 2N_{\ (s)}+M^{2+}_{(aq)}$	(2 marks)
	(b) 100cm ³ of 2M sulphuric (VI) acid was electrolyzed using the s	set up

represented by the diagram below.

(i) Nan	ne elec	trode .	A and	electro	de B					(2 m	arks)			
		-				hat pro				,	nark)			
(iii) De	scribe	how g	gas K (can be i	dentif	ied				(1 m	ark)			
(iv) Ex											••••			
					_	ses prod							(1 mar	ŕ
		II) B sulph	rightn huric (ess of t VI) aci	he bul	lb if 100) cm ³ o	f 2M e	thano	ic acid	was	used i	in place (2 marl	e of ks)
	_	rid bel	ow pr	esents p	part of	the per	riodic ta	ıble. Sı	tudy it	and a				
	A													1
	В								F		Н	J	N	
	С							P	G		Ι	K		1
	D											L		1

a) State the family name of the following elements B, K and N. B-	(3 marks)
<i>K</i>	
<i>N</i>	
b) Give the formula of the compound formed between P and K.	(1 mark)
c) Compare and explain the melting points of elements C, P and G.	(2 marks)
d) Name the most reactive metallic and non- metallic elements.	(1 mark)
Metallic-	` '
Non-metallic –	
e) Write the equation for the reaction that takes place between element C a (1 mark)	and water.
f) Compare and explain the first ionization energies of elements C and D.	
g) Element B combines with chlorine to form a chloride of B. State the movalue of a solution of a chloride of B. Explain	ost likely pH (2 marks)

3. Study the scheme below and answer the questions that follow.

a)	State or	ne source of each of the following	(2 marks)
	(i)	Hydrogen	
	(ii)	Nitrogen	
o)	State tw	yo other conditions other than the use of catalyst that would	d favour the reaction (2 marks)
			` '
2)		he catalyst used in each of the steps I and II	(2 marks)
	Step II		
d)	Name t	he following substances P	
	(ii) Gas	X	(1 mark)
	(iii)Soli	d Q	(1 mark)
	(') (V	(1 1)

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

4.	(a) The following data was obtained during an experiment to determine the molar heat of combustion of ethanol.							
		$=500 \text{cm}^3$						
		Initial temperature of water	$=25^{\circ}c$					
		Final temperature of water	$=44.5^{\circ}\mathrm{c}$					
		Mass of ethanol + lamp before burning	= 121.5g					
		Mass of ethanol+ lamp after burning	= 120.0g					
	Calcui	late the;	g					
	(i)	The highest temperature change.	(1 mark)					
	、 /		· ·					
	(ii)	The mass of ethanol used to boil water.	(1 mark)					
	(iii)	Number of moles of ethanol used. (molar mass of ethanol=46.0g)	(1 mark)					
	(iv)	Heat evolved during the experiment (density of water-1g/cm ³ , spe	cific heat					
		capacity of water=4.2Jg ⁻¹ K ⁻¹).	(2 marks)					
	(v)	Molar heat of combustion of ethanol (C=12,O=16, H=1)	(2 marks)					
	(vi)	Write the thermochemical equation for the complete combustion of mark)	of ethanol. (1					
	(vii)	In the spaces provided, sketch a simple energy level diagram for the change.	ne above (2 marks)					

5. The table below contains information from the measurements made of the radioactivity in counts per minute from radioisotope iodine-128.

Counts per minute	240	186	170	156	143	122	108
Time (minutes)	0	15	20	25	30	40	50

(i)	Plot a graph of counts per minutes against time. marks)	(3
(ii)	Use the graph to determine the half-life of iodine 128.	(1 mark)
(iii)	What is the count rate after:	(2 marks)
	(a) 12 minutes?(b) 22 minutes?	

(iv)	After how many minutes was the count rate: (a) 160 counts per minute?	(2 marks)
	(b) 197 counts per minute?	
(v)	State two uses of radioactive isotopes in agriculture. (2mark	
6.	The scheme below shows some reactions starting with ethane. Study it and following questions.	I answer the
	CH ₃ COOH Reagent Q CH ₃ COONa 1. Reagent R CH ₄ CH ₄	

(i) Give the name and draw the structural formula of compound P. (2 marks)

(ii)	Name the type of reaction and the reagents for the reactions in the following			
	steps.			
	Step I	Type	(2 marks)	
		D		
		Reagents		
	Step II	Type	(2 marks)	
		Reagents		
		Туре	(2 marks)	
	_		,	
		Reagents		
(iii)	Name the 1	reagent ()		
(111)			(1 mark)	
(iv)	Give the na	ame and the structure of compound T	(2 marks)	
	Structure			
	Name			
(v) D	raw the struc	ctural formula of \mathbf{M} and give name	(1 mark)	
	Structure			

N.T		
Name		

(vi)	(I) Name compound K	(1 mark)
	(II) If the relative molecular mass of K is 84,000 determined (III) H=1)	mine the value of n (C=12, (1 mark)
7. a) :	Name the allotropes of carbon.	(1 mark)
 b) (belo	Carbon (IV) oxide was passed over heated charcoal powder	
(i	Carbon Ty oxide Solution N Carbon N	Gas M Water
	(i) Name gas M	(1 mark)
	(ii) Write an equation for the formation of gas M	(1 mark)
c)	Identify solution N and state its purpose in the set up.	(2 marks)

ÉcoleBooks

Ecolebooks.com	

	Carbon (IV) oxide does not support combustion yet burning magnesium in it.	n continues to
i) I	Explain this observation	(1 mark)
	Write a chemical equation for the reaction that occurs.	(1 mark)
e)	Using dots (•) and cross (x) to represent outermost electrons, show the carbon (IV) oxide molecule.	structure of a (2 marks)
f)	Carbon (IV) oxide is used in the industrial manufacture of sodium carb	oonate.
,	(i) Name the other reagent in the Solvay process.	(1 mark)
	(c) Traine the other reagens in the Sorray process.	······
	(ii) Name the by product in this process and state any two of its uses. (