

CHEM PP2

LANJET MARKING SCHEME

1. (a) (i)

The thistle funnel has to dip inside the solution so that the gas does not escape through it.

- (ii) Sodium peroxide Na₂O₂
- (b) (i) $4P(s) + 5O_2(g) \rightarrow 2P_2O_5(g)$
 - (ii) Phosphorous (V) oxide dissolves in water to form an acid (Phosphoric acid)
- (c) A firm oxide (aluminium Oxide) is formed on the surface of the metal. This oxide protect aluminium from further attack
- (d) (i) A reaction which proceeds by production of heat i.e heat is lost to the surroundings.
 - (ii) The yield will be lowered: through the Le- Chateliers principle, the yield is expected to increase. But lower temperatures will result into fewer particles attaining activation energy.
 - (iii) RMM of $SO_3 = 32 + 48 = 80$

Moles of SO₃ used = $\underline{350} = 4.38$ moles

80

Moles of $H_2S_2O_7 = 4.38$ moles

RMM of $H_2S_2O_7 = 2 + 64 + 112 = 178$

Mass of $H_2S_2O_7 = 4.38 \times 178 = 779.6 \text{ kg}$

2. (i)
$$C_2 H_4 O_2$$
 it melting point is higher than $10^0 C$

(ii) CH_{14} and $C_5 H_{12}$

 $C_6 H_{14}$ has a higher melting point since it is more bulky compared to $C_5 H_{12}$; hence the vanderwaals force between the molecules of $C_6 H_{14}$ is abit stronger.

iii) C_3H_8O is more soluble in water than C_5H_{12} because it formshydrogen bonds with water molecules i.e it is polar due to the presence of (⁻OH) group.

ii) $C_4H_{8(g)}$ + $6O_{2(g)}$ \rightarrow $4O_{2(g)}$ + $4H_2O_{(l)}$

Reagents

ii). – Concentrated sulphuric acid

- Al₂O₃ or phosphoric acid (Catalyst)

Conditions

Heat $(160-180^{\circ}C)$

- d) i) Saponification/Hydrolysis
 - ii) Fats/ ester
- e) i) Polymerisation
 - ii) Substitution

3.

a) - potassium manganate (vii)

- Lead (IV) oxide
- Manganese (IV) oxide
- Calcium chlorate (CaOCl₂)
- b) i) to remove all the oxygen which would form iron (iii) oxide instead of iron (iii) chloride.
 - ii) CaO can absorb both Cl₂ and moisture, CaCl₂ can only absorb moisture.
 - iii) RMM FeCl₃ = 162.5

Moles of FeCl₃ = 0.5 = 0.003

162.5

Moles of $Cl_2 = 3 \ge 0.0045$

Vol of Cl₂= $0.0045 \times 24000 = 110.8 \text{cm}^3$

c) Fe^{3+} is reduced to Fe^{2+} ; H_2S is oxidized to sulphur

d) Turns, red then white because chlorine is acidic and a bleaching agent inpresence of water.

e) i) M 2:8

C 2:8:8

ii) Ionic bond

- iii) Group one, Period 4
- iv) "R" has a large atomic radius that "L". The outermost electrons in "R" are not held tightly its nucleus.

4. a) i) $\Delta H_1 \& \Delta H_2$

- ii) $\Delta H_3 \& \Delta H_4$
- iii) ΔH_1 Atomisation
 - $\Delta H_4-Condensation$
- b) i) Δ H latt + -4690 + (3x 364) = 332
- $\Delta H \text{ latt} 5782 = -332$
- ΔH latt = 5450kJmol⁻¹
- ii) draw

- c) i) $2C_4H_9OH_{(l)} + H_3O_{2(g)}$
- ii) Draw

1) $\Delta H_{f} + -2676 = (4 \times -393) + (5 \times -286)$ $\Delta H_{f} = -1572 + -1430 + 2676 = -326 \text{kJ mol}^{-1}$

5. a) i)
$$G_{(s)} + H^{2+}_{(aq)} \longrightarrow G^{2+}_{(aq)} + H_{(s)}$$

iii) $EMF = E^{0}_{red} - E_{oxi}$
 $+ 0.34 + 0.44 = + 0.78v$
b) i. K.... Cathode

J..... Anode
ii.
$$M - 4H^+_{(aq)} + 4e^- \longrightarrow 2H_{2(g)}$$

 $H - 4OH^-_{(aq)} \longrightarrow 2H_2O_{(1)} + O_{2(g)} + 4e^-$

iii. HCl_(aq)ions are readily discharged to chlorine gas hence there will be a mixture of two gases as the anode products (oxygen and chlorine gases)

c)
$$144750 \text{ Columbus} = \frac{144750}{96500} \text{ Faradays} = 1.5\text{F}$$

2 faradays gives 64g of copper

1.5 faradays give $\frac{1.5 \times 64}{2} = 48g$

6. i) I) Carbon (II) Oxide / Carbon (IV) Oxide II) Dilute Sulphuric acid

Chamber I

ii) $ZnO_{(s)} + C_{(s)} \rightarrow CO_{(g)} + Zn_{(s)}$

Roaster

$$2ZnS_{(s)} + 3O_{2(g)} \longrightarrow SO_{2(s)} + ZnO_{(s)}$$

Chamber II

$$Zn_{(s)} + H_2SO_{4(aq)} \longrightarrow ZnSO_{4(aq)} + H_{2(g)}$$

- iii) I: Mass of ZnS = $\frac{45 \times 250}{100} = 112.5g$
 - II: $22 \operatorname{ZnS}_{(s)} + 3O_{2(g)} \longrightarrow 2SO_{2(g)} + 2ZnO_{(s)}$

Moles of ZnS $=\frac{112.5}{97.4} = 1.16$ moles

Volume of $SO_2 \equiv 1.16$ Moles

Volume of $SO_2 = 1.16 \text{ x } 24 = 24.72 \text{ dm}^3$

III
$$\frac{65.4 \text{ x } 112.5}{97.4} = 75.54 \text{ g of } \text{Zn}$$

b) - Cause acidic rain - SO₂ is poisonous

- c) Contact process: SO₂ (by product) can be used to manufacture sulphuric
- 7.

a)

Nuclear reactions	Chemical reactions	
Inolves protons and neutrons	Involve valency electrons	
Reaction rate not affected by element	Reaction rate is influenced by element	
changes	changes	Any pair
Involve huge amount of energy	Involve little amount of energy	
There is change in mass	No change in mass	
b) i) 1: Alpha	II: beta	, J

4

2

ii) 210 206
PoPb
$$\leftrightarrow$$
 He
84 82

c) i)

ii) I 120 minutes

II % value at 70 minutes = $9\% \pm 2$

$$Mass = \frac{0.16 \text{ x } 100}{9\pm} = 1.778(g)$$

- d) Treatment of cancer
 - Sterlization of surgical equipment
 - Treatment of leation of goiter
 - Regulate heat pace makerAny one
 - Detection of blood circulation disorders
 - Measure of uptake of iodine.