

233/3		
CHEMISTY PAPER 3		
PRACTICAL		
FORM 4		
END TERM II 2020		

MERU CENTRAL SUB-COUNTY CLUSTER EXAMINATION KENYA CERTIFICATE OF SECONDARY EDUCATION (KCSE)

Marking Scheme

	Ι	Π	III
Final reading	12.5	25.0	12.5
Initial reading	0.2	12.5	0.0
Volume used (cm ³)	12.5	12.5	12.5

Marks distributed as follows:

(a) Complete table (1mk)
3 titration done (1 mk)
Incomplete table with 2 titration (½ mk)
Incomplete table with one titration done (0 mk)

• Penalties

- Wrong arithmetic
- Inverted table
- Unrealistic title values (unless explained)

Penalize ($\frac{1}{2}$ mk) for each to a miximum of ($\frac{1}{2}$ mk)

- (b) Decimal place (1mk)
- Accept only 1 or 2 d.p used consistently, otherwise penalize fully.
- Accept inconsistency in the use of zeros as initial burette reading e.g. 0.0, 0.00 or 0.000.
 NB decimal place tied to 1st and 2nd rows only.
- (c) Accuracy (1 mk)
- Compare candidate's title value with school value S.V. if one value within ± 0.1 of S.V (1mk) No value within ± 0.1 of S.V butat least 1 value within ± 0.2 or S.V (0 mk)
- (d) Averaging (1 mk)

Values averaged must be sown If 3 consistent titrations done and averaged = (1 mk) If 3 titration done, but only 2 are consistent and averaged = (1 mk) If only 2 titrations done, are consistent and averaged = (1 mk) Otherwise penalize fully

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

CALCULATIONS (a) $\frac{12.5+12.5+12.5}{3} \left(\frac{1}{2}mk\right) = 12.5cm^3 \left(\frac{1}{2}mk\right)$

(b) (i) Moles in
$$250 \text{ cm}^3 = \frac{0.5}{40} = 0.0125 \text{ moles } (\frac{1}{2}\text{ mk})$$

Moles used =

$$\frac{0.0125 \times 25}{250} \left(\frac{1}{2} Mk\right) = 0.00125 \ moles$$

(ii) Moles of acid reacting = $0.00125 \left(\frac{1}{2}mk\right)$ mole ratio 1:1 250 \longrightarrow ?

$$\frac{0.0125 \times 25}{250} \left(\frac{1}{2} \ mk\right) = moles \left(\frac{1}{2} \ mk\right)$$

(iii) Molarity of solution A $10 \text{cm}^3 = 0.25 \text{ moles}$ 1000 = ?

$$\frac{1000 \times 0.25}{10} \left(\frac{1}{2}mk\right) = 25 \ moles\left(\frac{1}{2}Mk\right)$$

PROCEDURE II

Correct answer

TABLEII

Volume of	volume of distilled	Concentration of	Time(s)	$I_{(a^{-1})}$
solution A	water	solution		$\frac{1}{t}$
(cm^3)		A(moles/1)		
12	0	2.5	25.5	0.0363
10	2	2.08	34.25	0.0292
8	4	1.67	45.45	0.0220
6	6	1.25	69.44	0.0144
4	8	0.83	120.01	0.0083

Complete table (4mks)Decimal places (tied to 3^{rd} and 5^{th} column) (1mk)Accuracy (tied to row (i) to (iv)Trend (gradual increase in time)Questions(c) (i) read from graph (1mk)Value of $\frac{l}{t}$ (1mk)

 $(\frac{1}{2} Mk)$

	Observation	inference
2. (a)	- Colourless liquid condenses at coller parts of test tube	 Hydrated salt NH⁺₄ ions
	- A white residue remain Any 2 (1mk)	Any 2 correct ions award (1 mk)
(b) i)	 Solid dissolves (½ mk) to form a colourless solution (½ mk) 	Mg ²⁺ AI ³⁺ ,Zn ²⁺ Present
		Any One
		Or Cu^{2+} , Fe^{2+} , Fe^{3+} absent ($\frac{1}{2}$ mk)
(ii)	white precipitate is formed ($\frac{1}{2}$ mk)	CO^{2-3} , SO^{-2} , Cl^{-} , SO^{2-3} present
		Any two ions award (¹ / ₂ mk)
		Penalize the (¹ / ₂ mk) for any contradictory ion.
(iii)	A white precipitate form (¹ / ₂ mk)	SO^{2-4} ions confirmed ($\frac{1}{2}$ mk)
(iv)	White precipitate ($\frac{1}{2}$ mk) dissolves in excess	Zn^{2+} , Pb ²⁺ or AI ³⁺
	to form a colourless solution ($\frac{1}{2}$ mk)	Any 3 ions $-(1mk)$
		$2 \text{ ions} (\frac{1}{2} \text{ mk})$
		0 mk for any only one ion
(v)	White precipitate (1/2 mk) in excess	Pb ²⁺ , AI ³⁺ present
		Both ions (1mk)
		One ion (¹ / ₂ mk)
(vi)	No white precipitate formed (1 mk)	Pb ²⁺ absent or AI ³⁺ present (½ mk)

	Observation	inference
3. (a)	Dissolves form (½mk) a colourless homogenous	Polar substance (1/2 mk)
	solution (1/2 mk)	
(b) (i)	PH value $1 - 3 (\frac{1}{2} \text{ mk})$	Strong acid present (¹ / ₂ mk)

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

(ii)	Purple acidified KMnO ₄ decolorised (1 mk)	OR -OH present
(iii)	Bromine water decolourised (1 mk)	OR -Oh. Present All three (1mk) Two only $(\frac{1}{2} \text{ mk})$
(iv)	Effervescence (¹ / ₂ mk)	R-cloth Present
(v)	Sweet smelling Compound formed (1 mk)	R-4 0H 2 Present (¹ / ₂ mk)

