

NAME:	INDEX NO:
SCHOOL:	Candidate's signature:
Data	

END OF TERM 1 EXAMINATION 2020

FORM 4

232/1

PHYSICS

PAPER 1

TIME: 2 HRS

INSTRUCTIONS

- 1. Write your name and your index number in the spaces provided.
- 2. This paper consists of two sections, Section **A** and **B**. Answer **ALL** the questions in both section in the spaces provided in this paper.
- 3. **ALL** working must be clearly shown.
- 4. Mathematical tables and electronic calculators **may be** used.

FOR EXAMINER'S USE:

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
A	1-12	25	
В	13	11	
	14	12	
	15	11	
	16	8	
	17	13	

TOTAL	80	

SECTION A (25 MARKS)

Answer all the questions in this section in the spaces provided.

1. Figure 1. shows a micrometer screw gauge being used to measure the diameter of a ball bearing.

If the instrument has a negative	ve zero error of 0.01mm	n, record the actual diamet (1mk)	er of the ball bearing
2. Figure 2. shows drops of n		glass surface,	
	Mercury drop	Water drop	
	0	Glass	(2.1.)
Explain the difference in the s	shapes of the drops.		(2mks)

4. Figure 3 shows three identical springs each of spring constant 4.5N/m and negligible weight are used to support a load as shown. Determine the total extension of the system. (2mks)

5. Figure 4 shows a uniform rod **AB** of negligible weight pivoted at **A**.

If the	e system is in equilibrium, determine the weight W shown in the diagram.	(3mks)
6.	A ball is thrown from the top of a cliff 20m high with a horizontal velocity	of 10ms ⁻¹
·	Calculate the distance from the foot of the cliff to where the ball strikes the	
	marks)	8
• • • • • •		
• • • • • •		
• • • • • •		
• • • • • •		•••
7.The	height of mercury column in a barometer density 13600kg/m^{-3} , at a place is	64cm. What
	would be the height of a column of paraffin in barometer at the same place	
	(Density of paraffin = $8.0 \times 10^2 \text{ kg/m}^3$). (3mks))
• • • • • •		

8. Explain o	o n e advantage o	f mercury ove	er alcohol as a	thermometric liquid.	(1mk)
	mass M is allow	wed to slide d	own an incline	d plane. State two fact	
	mass 1 tone mog force.(2mks)	ving at a velo	ocity of 108km	/hr is brought to rest ir	5 seconds. Calculate
11 E1-1-				-1-i 6i1- d (2	1
11. Explain	wny a gas cylind	der in a nouse	e containing co	oking fire explodes.(2)	mks)
	=			road. One drop falls or rop on the ground.	n the ground every
DOW	1	2	3	4	

• • •

(i) Describe the motion of the car.	(1mk)
(ii) Determine the acceleration of the car if the distance between drop 1 & 2 is 20 meters distance between drop 3 & 4 is 40 meters	and the (2mks)
SECTION B - 55 MARKS	
Answer <u>all</u> questions in this section in the spaces provided.	
13. a) State Pressure Law .	(2mk)

b) Figure 6 shows a set up that may be used to verify Pressure law.

i) State the mea	asurements that may b	e taken in the experi	ment.	(2mks)
_	the measurement in (i)	-	•	
	at an air pressure of 4.0 o 75 °C. What is the ne	=		-
(3mks)				
14. (a) Define s	specific latent heat of f	usion of a substance	. (1mk)	

(b) Figure 7 below shows a block of ice with two heavy weights hanging such that the copper wire connecting them passes over the block.

(i) It is observed	that the wire gradually cuts through the ice block, but leaves it as one piece
Explain (3	Smks)
(ii) What change	e would be observed if the copper wire used in the experiment was placed
by a cotton threa	
ej westen unew	

(i) Derive an expression for the heat gained by the ice as it melts to water at temperature **T**. (2mks)

(c) A block of ice of mass 40g at 0°C is placed in a calorimeter containing 400g of water at

20°C. The heat absorbed by the calorimeter is negligible. The final temperature of the mixture after all the ice has melted is T. (specific latent heat of fusion of ice=340,000 J/kg,

specific heat capacity of water=4200JKg⁻¹k⁻¹)

(ii) Derive an expression for the heat lost by the water	er. (1mk)
	•••••
(iii) Determine the value of T . (2mks)	
(d) State two differences between boiling and evaporation	
15.(a) State the law of floatation.	(1mk)

(b) Figure 8 shows a piece of cork held with a light thread attached to the bottom of a beaker. The beaker if filled with water.

DOWNLOAD MORE RESOURCE

Cork

(i) Indicate and label on the diagram the forces acting on the cork.(ii) Write an expression showing the relationship between the forces.(1mk)	(3mks)
(c) A solid displaces 8.5cm ³ of liquid when floating on a certain liquid and 11.5 submerged in the liquid. The density of the solid if 0.8g/cm ³ . determine: (i) Up thrust on the solid when floating.	
(ii) Density of the liquid.	(3mks)
16. (a) Name a device that is used to convert sound energy to electrical energ	

(b) Define the term efficiency of a machine.	(1mk)
(c) A pulley system having a velocity ratio of 4 is used to raise a load of 0.6m at a constant speed using an effort of 60N in a time of 15 seconds	
(i) Calculate the efficiency of the system.	(2mks)
(ii) How far does the effort end move in order to raise the load by 0.6m	i. (2mks)
(iii) Determine the power developed by the effort. (2 mks)	
(m) Betermine the power developed by the errort. (2 mks)	
17. (a) Define the following terms:	
(i) Instantaneous velocity.(1mk)	

(ii) Uniform acceleration (1mk)
(b) A car moves with a constant velocity of 15m/s for 300s and is then accelerated uniformly to a velocity of 25m/s in the next 20s. this velocity is maintained for the next 300s. the car is then brought to rest in 30s with uniform deceleration.
(i) Sketch a velocity-time graph for this journey.(2mks)
.From the graph determine;
(ii) The acceleration while the velocity is changing from 15m/s to 25m/s.(2mks)
(iii) The total distance traveled from the time the car reached maximum velocity of the car during this period.(2mks)
(c) A ball is thrown horizontally at V=8m/s from a tower. It reaches the ground after 4s. Find:
(i) The horizontal distance d it travels before hitting the ground.(1mk)

(ii) The height of the tower (2mks)
(iii) The velocity on impact with the ground.(2mks)