

NAME:	INDEX
	SCHOOL:
SIGNATURE	•••••
232/ 1	
PHYSICS	
PAPER 1/232	
TIME 2hrs	

SUKELLEMO JOINT EXAMINATION

Kenya Certificate of Secondary Education 2020

INSTRUCTIONS TO CANDIDATES

- ❖ write your name and your class in spaces provided
- \clubsuit This paper consists of two sections, section **A** and section **B**
- ❖ Answer **ALL** the questions in each section in the spaces provided.
- ❖ Mathematical tables and Electronic calculators may be used
- ❖ All working must be clearly shown where necessary.

For Examiner's Use On ly

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
A	1-10	25	
В	11	12	
	12	11	
	13	15	
	14	17	
	TOTAL	80	

SECTION A (25 MARKS)

Answer ALL the questions in this section in the spaces provided

1.	The level of water in a burette is at 30 cm ³ . 400 drops of water each of volume 0.015 cm ³ was removed from	the burette.
	Determine the new level of water in the burette	[3 mks]
		•••••
2.	Calculate the temperature change of water as it falls through a height of 20 m. (Take $g = 10 \text{ N/kg}$ and s.h.c of	f water =
	4200 J/kg/K)	[3 mks]
		•••••
3.	State the SI unit of density	[1 mk]
4.	Give a reason why heat transfer by radiation is faster than heat transfer by conduction	[1 mk]
5.	A railway truck of mass 4000 kg moving at 3 m/s collides with a stationary truck of mass 2000 kg. The coup	lings join and
	the trucks move off together. Calculate their common velocity after collision.	[3 mks]

••••••	 		
	 	• • • • • • • • • • • • • • • • • • • •	

6.	State the principle of moments	[1 mk]
7.	An air bubble with a volume of 1 cm ³ escapes from the helmet of a diver at a depth of 200 m below the water su	ırface.
	What will be the volume of the bubble immediately it breaks the surface of water? (Take atmospheric pressure	= 10 m of
	water)	[4 mks]
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
8.	Calculate the acceleration due to gravity on a planet where an object released from rest falls through a height of	54.2 m in
	1.08 s.	[3 mks]
		• • • • • • • • • • • • • • • • • • • •
9.	State the three factors on which the rate of heat flow depends on.	[3 mks]

10.	. Under a driving force of 3000 N, a car of mass 1200 kg has an acceleration of 1.3 m/s². Find the frictional resist	ance
	acting in the car.	[3 mks]

SECTION B (55 MARKS)

Answer ALL the questions in this section

11. a) Explain the following as regards the solar heater:

1)	why the pipe is fixed to a dark-coloured collector plate.	[1 IIIK]
		••
ii)	Why the pipe is made of copper	[1 mk]
		• • • • • • • • • • • • • • • • • • • •
iii)	Why the pipe is coiled several times	[1 mk]
		• • • • • • • • • • • • • • • • • • • •
iv)	Why the collector plate is fixed to an insulator.	[1 mk]

(coleB	OOKS	

 •••••	•••••	 •

v)	Why the panel front is covered with glass.	[1 mk]
b). L	iquids expand when heated and contract when cooled. However this is not always true for water.	
i.	What name is given to the behavior of water?	[1 mk]
ii.	States two importance of this behavior of water.	[2 mks]
		• • • • • • • • • • • • • • • • • • • •
iii.	State any two disadvantages of this behavior.	[2 mk]
iv.	A man wants to fit a brass ring onto a steel rod of diameter equal to the inner diameter of the rin	ng. Explain how
	this can be achieved	[2 mk]

$\underline{Ecolebooks.com}$

12. The figure below shows a hydraulic press supporting a load F.

a)	wnat p	roperties of fiquids make them suitable for use in flydraufic machines such as the one above?	
b)	If A an	d a are areas of cross-section of the pistons, and the lengths of the arm are as given, find:	•••••
	i.	The force F_{\circ}	[3 mks]
			•••••
	ii.	The mechanical advantage	[1 mks]

.....

iii.	The efficiency of the machine	[3 mks]
		•••••
iv.	State two reasons why the efficiency of a pulley system is always less than 100%	[2 mks]
3. a) You	are provided with the following:-	
	- A block of wood	
	- A spring balance	
	- Thin thread	
	- Overflow can	
	- A small measuring cylinder	
	- Some liquid	
With th	ne aid of a labeled diagram describe an experiment to the law of floatation.	[4 mks]

 •	•••••	•••••	
 •		•••••	

b) The diagram below shows a car acid hydrometer.

(i) Indicate on the diagram above the minimum and the maximum measurement to be taken.	[2 mks]
(ii) State the reason why the bulb is wide.	[2 mks]
c) (I) Figure below shows a uniform plank of weight 20N and length 1.0m balanced by a 0.5kg in	
distance x from the pivot point O.	
← x →	
0.5kg	
Determine the value of X	[2 mks]
	•••••
	•••••

(II) When the block is completely immersed in water the pivot \mathbf{O} must shift by 0.05 m to the left for the system to balance. The density of water is 1000 kgm⁻³. Determine:

i)	The upthrust U on the block.	[3 mks]
ii)	The volume of the block.	[2 mks]
14. a) i)	Distinguish between elastic and inelastic collisions.	[2 mks]
ii) A body	of mass 5 kg is ejected vertically to a height of 7.2 m from the ground when a	a force acts on it for 0.1s.
Calculate tl	he force used to eject the body.	
		[3mks]
b) i) Explai	in why the moon is said to be accelerating when revolving around the earth at	constant speed [2mks]

	•
c) A stone is whirled in a vertical circle as shown in the figure below using a string of length 40 cm. A, B, C and D are	
various positions of the stone in its motion. The stone makes 2 revolutions per second and has a mass of 100g.	

i)	Calculate:	
I.	The angular velocity	[3mks]
II.	The tension on the string at position A	[3 mks]
(ii) At C v	where the stone has acquired a constant angular speed, the	string cuts. The stone takes 0.5 seconds to land on the
ground. H	low high is point C above the ground.	[2 mks]
•••••		
	far does it travel horizontally before hitting the ground.	[2 mks]

