

PHYSICS PAPER 1

FORM 4

TRIAL 2, 2019

MARKING SCHEME

1. Measured diameter = 0.30

0.03

 $0.27 \text{ mm}\sqrt{1}$

 $\begin{array}{c|c}
30\sqrt{} & \text{sleave reading }\sqrt{1} \\
\hline & 25 & \text{thimble reading }\sqrt{1} \\
\end{array} \tag{3mks}$

2. As the sucker sticks to the clean surface the air in it goes outside cheating a partial vacuum in it, greater atmospheric pressure acts on the sucker from outside. $\sqrt{1}$ (1mrk)

3. Closely wrap the thread 10 times around a cylinder. $\sqrt{1}$

- use the Meter rule to measure the beginning and the $\text{end}\sqrt{1}$

- Repeat three times and get the average length i.e the circumference $\!\sqrt{1}$

- Use the formulae $\frac{c}{\pi} = D\sqrt{\Delta}$ to find the diameter (4mks)

4. (i) $\frac{12000}{4} = 3000 \text{ N} \sqrt{1}$

(ii)
$$P = \frac{F}{4} \sqrt{\frac{F}{4}}$$

 $\frac{3000}{80} \times 10000$

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Ecolebooks.com

= 375,000pa √		(3mks
5. Gases have larger intermolecular distanc	re√1	
6 Constriction $$		
- Narrow bore $$		
- High temperature range $$		(3 mks)
7. (i) Decreases / reduces $\sqrt{1}$		
(ii) Increases√1		
8. (i) increase their absorbing power $\sqrt{1}$		
(ii) Increase the surface area of exposure	$\sqrt{1}$	
(iii) Copper is a good conductor of heat \checkmark	/1	(5mks)
(iv) Prevent heat loss to the surrounding/r	etain heat in the water $\sqrt{1}$	
(v) Allow the rays of light inside $\sqrt{1}$		
9. (a) Product of force and perpendicular d force. $\sqrt{1}$	listance between the pivot and	line of action of the
(b) Clockwise moments =Anticlockwise mo	oments or $F_1d_1 = F_2d_2\sqrt{1}$	
$0.5 \ge 0.3 = W \ge 0.2\sqrt{1}$		
W= 0.75N√1		without units ½
10 Luggage compartment in buses are in	the lower parts	
- Racing cars have low cog and wide whe	el base	
- Bunsen burner has wide heavy base.		
- Chairs /stools/tripods have three or m	ore legs inclined outwards.	
- Acrobats .	Any two 1 mk each	(2mks)
11- Can be trapped and cause accident /fall	l√1	
- Can catch fire $\sqrt{1}$		(2mks)
DOWNLOAD MORE RESOURCES LIKE THIS ON	OLEBOOKS.COM	

Ecolebooks.com

SECTION B

14. (a) B√1

- Has a lower speed	$\sqrt{1}$	(2 mks)
(b) (i) $v^2 = u^2 + 29S$	$\sqrt{1}$	
50 ² =30 ² +(2x5x5)	$\sqrt{1}$	
S= 160m	$\sqrt{1}$	(3 mks)
ii) F = ma√		

$$F = 2.7 X \frac{(0-50)}{2}$$

√1

$$\Gamma = 2.7 \text{ A} = \frac{15}{15}$$

15. (a) A floating object displaces its own weight of the fluid of the fluid in which it floats $\sqrt{1}$

(b) i)
$$\int = \frac{m}{v}$$
 or $M = \int XV \sqrt{M}$
 $M = 1.5 \times 4 \times 10$
 $M = 60g \text{ or } 0.06 \text{ kg}\sqrt{1}$ (3mks)

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Ecolebooks.com

$$U=1000 \times \frac{4 \times 7.5}{1000000} \times 10\sqrt{1}$$

= 0.3N $\sqrt{}$
(iii) W object - U $\sqrt{}$
0.6 - 0.3
0.3 N
15. (IV) U = $\int vg$
= $1000 \times \frac{40}{100000} \times 10$
= $0.4N\sqrt{1}$
W-U
0.6-0.4
0.2N $\sqrt{1}$

(3mks)

16. (a) attractive forces between the nucleus and electrons.

b) I) F= mw²r. 1 w =
$$\sqrt{\frac{F}{mr}}$$

 $\sqrt{\frac{0.4}{0.05 \times 0.1}} \sqrt{1}$

= 8.944mrad/sec $\sqrt{}$ with/without 1 units

II) T =
$$\frac{2\pi}{W}$$

T = $\frac{2\pi}{8.944}$
= 0.7024
= 0.705

=

ii) A tangent with an arrow

```
17a) (i) m_1v_1 + m_2 + u_2\sqrt{}
(150×20)+90×0
3000kgm/s\sqrt{1}
ii) (150+90) \sqrt{1}
```

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

240vkgm/s $\sqrt{1}$ (iii) 3000 = 240 $\sqrt{1}$ v =12.5 m/s $\sqrt{1}$	(2mks)
b) F=ke $50 = K \times 0.025$ K = 2000	
OR	
$F = \frac{50}{0.025} \times \frac{4}{100} = 80N$	
18. a) AS it rises pressure decreases $$ thus volume of the bubble increases. (b) (i) P = $\frac{enery}{time}$ / E=p× t_1 E=2500×240 = 600000J $$	(
$E = 2500 \times 240$	
= 600,000 J√	(2Mks)
(ii) Q= MC $\Delta\theta\sqrt{1}$	
$\Delta\theta = \frac{600\ 000}{21 \times 4200} \sqrt{21}$	
$6.8^{ m o}$ C OR 6.8 K $$	(3Mks)
(b) VR = Effort distance Load distance $\sqrt{1}$	
$\sin\theta = \frac{h}{I} \mathbf{h} \mathbf{E} \mathrm{L} \sin\theta$	(2mks)
$VR = \frac{h}{l} \rightarrow = \frac{1}{\sin\theta}$	