

Name:	Index No
School:	Date: Sign

END OF TERM 1 EXAMINATION 2020

FORM 4

232/2 PHYSICS PAPER 2

TIME: 2 HOURS

Instructions to candidates;

- ❖ Write your name, index number and name of your school in the spaces provided.
- \diamond This paper consists of two parts **A** and **B**.
- ❖ Answer all questions in section **A** and **B** in the spaces provided.
- ❖ All working **MUST** be shown in the spaces provided after questions.
- ❖ Mathematical tables and electronic calculators may be used.
- ❖ Candidates should check the question paper to ascertain that ascertain that all the pages are printed as indicated and that no questions are missing.

For examiners use only

Section	Question	Maximum score	Candidates score
	1-12	25	
A			
	13	12	
В	14	14	
	15	14	
	16	15	
	Total score	80	

SECTION A (25mks)

Ar	swer <u>ALL</u> questions in this section in the spaces provided after each question.
1.	What is the purpose of a fuse in domestic wiring system? (1mrk)
2.	Use the domain theory to explain briefly why a ferromagnetic material gets saturated when magnetized. (2mks)
3.	The figure 1 below shows an object placed some distance from a biconcave lens.
	Object
	Figure 1
	Construct the image on the diagram. (2mks)
4.	What determines the hardness of X-rays? (1mk)
5.	Distinguish between the terms 'photoelectric' and 'thermionic' effect. (2mks)

6. The **figure 2** below shows a light rod balanced due to the action of the forces shown. Q is a magnet of weight 4N and R is a permanent magnet which is fixed. Determine the force between Q and R and state whether it is attractive or repulsive. (3mks)

Figure 2

 	 	 	 	 	 	 	 			 	 	 	 . .	 	 	
 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	
 	 							

7. Determine the ammeter reading when the potential difference of 3.0 volts is supplied across PQ in figure 3. (3mks)

.....

The chart below				of the electromas	vnetic spectrum	
Radio	A	Visible	В	X – Rays	Gamma Rays	
Name the pos	ssible radiat	ions represented	by letter B .			(1mk)
of sound.	(3maks)	_	_	records a time of s		_
. The figure 4 belo	ow shows a	plane mirror KL	and an obje	ect B.		
Object B		K				
Eye	l Figu	L				

a) Complete the ray diagram to show how the person sees the image. (2mks)

b) State the nature of the image formed. (2mks)

.....

11. The following equation represents a decay series.

210	x	210	α	a
83	0.570	→ ₈₄ -	u	→ թ Q

Identify the radiation \mathbf{x} and determine the values of \mathbf{a} and \mathbf{b} . (2mks)

12. A gold leaf electroscope is positively charged as shown in the diagram below where **C** is the cap and **L** is the gold leaf. State and explain what happens to **L** when a positively charged rod is brought near **C** without touching it. (2mks)

SECTION B (55 MARKS)

Answer ALL questions in this section in the spaces provided after each question.

- 13. a) Differentiate between transverse and longitudinal waves. (2mks)
 - b) Figure 5 shows a transverse stationary wave along a string

DOWNLOAD MORE

14.

Figure 5

ii).	Label the node If the distance velength of the	e between a	n anti-node			· .	etermine the	
	Five successive rator has a fre						stance of 6.4c	em. If the
 d).	The figure 6	below show	/s a displace	ement-time g	raph for a wa	ve motion		
	What is the fr	-20	E the wave?	— 0.02 s — Fig (3marks)	ure 6		time (s)	
····· ····· (a)	What do you	understand	by the term		ell? (1	 mk)		
						······································	ah various	ogistors D
	(b) A cell of ms and the variation (Chms)				-	5.0	8.0	esisiors R

I(A)	1.0	0.8	0.7	0.5	0.37	0.34
1/i(A ⁻¹)						

- i. Complete the table for the values of **1/i** giving your answer to 3d.p. (3mks)
- ii. Plot a graph of 1/i versus R. (5mks)

iii.	Given that the	ne equation	$\mathbf{E} = \mathbf{I}(\mathbf{R} + \mathbf{I})$	r), use yo	ur graph t	o determi	ne the valu	ies of E and r .	(5mks)
								• • • • • • • • • • • • • • • • • • • •	
*				-	•	•	•	. (3marks)	

b) Three capacitors of capacitance $200\mu f$, $300\mu F$ and $600\mu f$ are connected together in a circuit.

i. Draw a circuit diagram to show the arrangement of the capacitors which gives an effective capacitance of $100\mu f$. (2marks)

c) The figure 6 below shows a circuit where a battery of e.m.f 6V , switches X and Y, two capacitors of capacitance 2 μF and 4 $\mu Fare$ connected.

	i.	Determine the charge stored in the 2 µF capacitor when switch X is closed and switch Y is open. (3marks)
	ii.	When switch Y is finally closed and switch X is open, determine the potential difference across each capacitor. (3marks)
d)	Brief	ly explain how the lightening arrester works. (3mks)
	16. (a	a) Define the term 'work function'. (1mk)

(b) List three fact	(b) List three factors which affect photoelectric effects. (3mks)														
					•••••										
(c) The table bel photocell.	(c) The table below shows the stopping potential and the corresponding frequencies for a certain photocell.														
Stopping potential V _s (V)	0.2	0.6	1.10	1.42	1.83										
Frequency f (×10 ¹⁴ Hz)	4.0	5.0	6.0	7.0	8.0										

Plot a graph of stopping potential against frequency. (5mks)

	Us	se :	yoı	ur ;	gra	apl	ı to	o d	ete	err	niı	ne	;																																		
	i)	7	he	th	re	sh	old	l fı	eq	ue	nc	y.	.(2	m	ıks	s)																															
• • • •				• • •													• • •																														
	 ii)	F	Plai	nk'	's (CO1	nst	an	t. ((Ta	ake	e e	e to	o ł	be	: 1	.6	i×.	10) ⁻¹⁹	⁹ C	C)	(2r	nl	ΚS)																				
• • • •	• • • •	• • •	• • •	• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •	• •	• • •	• • •	• •	• •	• •	• • •	• • •	• • •	• •	• •	• • •	• •	• •	• • •	• •	• •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• •	• • •	• • •	• • •	• • •

