

NAME	INDEX NO
SCHOOL	CANDIDATE'S SIGNATURE
	DATE

232/2 PHYSICS (THEORY) PAPER 2 NOVEMBER 2020 TIME: 2 HOURS

SUKELEMO JOINT EXAMINATION-2020

Kenya Certificate of Secondary Education

INSTRUCTIONS TO CANDIDATES:

- (a) Write your Name and Index Number in the spaces provided above.
- (b) **Sign** and write the **date** of examination in the spaces provided **above**.
- (c) This paper consists of two Sections; A and B.
- (d) Answer **ALL** the questions in sections **A** and **B** in the spaces provided.
- (e) All workings must be clearly shown.
- (f) Non-programmable silent electronic calculators and KNEC Mathematical tables **may be** used.

FOR EXAMINER'S USE ONLY:

Section	Question	Maximum Score	Candidate's Score
A	1 – 13	25	
	14	10	
	15	13	
В	16	12	
	17	08	
	18	12	

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Total Score	80	

Turnover

SECTION A: (25 MARKS)

Answer ALL questions in this section in the spaces provided:

State two conditions under which a pinhole camera may for same size as the object.	(2mks)
The figure below shows a ray of light incident on the s	urface of one plane mirror.
Mirror 1 600 Incident light	ray
THIS .	
Lili	
× 70°	
Mirror 2	
Sketch the path of the ray on the diagram after striking i	mirror 2 indicating all the angles. (2 marks)
A steel is to be magnetized by electrical method as shown bresulting magnet.	below. Identify the pole ${f P}$ and ${f Q}$ of the (1mk)
5 1999999 Steel nach	e
P Insulateo	
6.0V	

4. A small chain is often seen hanging at the back of a petrol carrying lorry. State and explain its significance. (2mks)

5. The figure **below** shows two waveforms representing the same wave motion.

Determine the velocity of the wave.

(3mks)

6. An object O is placed in front of a concave mirror and on the principal axis, as shown in the figure **below**. Complete the light ray diagram to locate the position of the image. (3mks)

7.	Arrange the following radiations in order of increasing wavelengths.	(1mk)
	Infrared, blue light, ultraviolet, radiowaves, χ-rays.	

The	figure below shows a block diagram of a p-n junction diode.	
	p n	
On t	the same diagram, show how a cell may be connected so that it is reverse biased.	(1mk)
_	irl standing at a distance claps her hands and hears an echo from a tall building 2 see speed of sound in air is 340m/s, determine how far the building is.	econds later (3mks)
Wha	at do you understand by polarization as used in a simple cell?	(1mk)
State	e how the defect mentioned in question 10 above is minimized in a simple cell.	(1mk)
A cı	arrent-carrying conductor AB is in a magnetic field as shown in the figure below .	

(a) Indicate the direction of force F acting on the conductor. (1mk)

(b)	State two factors that determine the direction of the force F.	(2mks)
	are given three resistors of values 5Ω , 8Ω and 12Ω . Show in a circuit diagect them so as to give: an effective resistance of 9.8Ω .	gram how you would
	an effective resistance of 7.0s2.	
(b)	the least effective resistance.	(2mks)
-		
	SECTION B: (55 MARKS)	
Answ	ver ALL questions in this section in the spaces provided.	
(a)	Define refractive index.	(1mk)

(b)	The critical angle of a certain material medium is 43.2°. Determine the refractive material.	index of the (2mks)

(c)	(i)	What do you understand by the term accommodation? (1mk
	(ii)	The diagram below shows a certain defect of vision. Name the defect. (1mk) Near 86 jest Image
	(iii)	On the figure below show how the defect can be corrected. (2mks)
(d)		oject is placed 40cm in front of a concave lens of focal length 20cm; determine the on of the image. (3mks)
(a)	(i)	State Lenz's a law of electromagnetic induction. (1mk)

15.

(ii) A bar magnet is moved into a coil of insulated copper wire connected to a centre-zero galvanometer, as shown in the figure **below**.

- (i) Show on the diagram the direction of induced current in the coil. (1mk)
- (ii) State and explain clearly what is observed on the galvanometer when the S-pole of the magnet is moved into and then withdrawn from the coil. (4mks)

(b) A transformer has 800 turns in the primary and 40 turns in the secondary winding. The alternating e.m.f connected to the primary is 240V and the current is 0.5A.

(i)	Deter I	mine the secondary e.m.f	(2mks)
	II	the power in the secondary if the transformer is 95% efficient.	(2mks)

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

	(ii)	Explain how energy losses in a transformer are reduced by having: I a soft-iron core.	(2mks)
		II a laminated core.	(1mk)
. (a)	(i)	Distinguish between thermionic emission and photoelectric emission.	(2mks)
	(ii)	State one factor which affects the rate of each of the above types of emis Thermionic emission.	esion. (1mk)
		Photoelectric emission.	(1mk)
(b)		Im has a work function of 2.3eV. Given that: Planck's constant $h = 6.63 \times 10^{10}$ ty of light in vacuum, $C = 3.0 \times 10^{10}$ m/s, 1 electron-volt (1eV) = 1.6×10^{10} of an electron, $m_e = 9.1 \times 10^{-31}$ kg, calculate:	

		(ii) the maximum velocity of the photoelectrons produced when the sodium by light of wavelength 5.0×10^{-7} m.	n is illuminated (4mks)
		(iii) the stopping potential V, with the light of this wavelength.	(2mks)
17.	(a)	State two advantages of using a Cathode Ray Oscilloscope (C.R.O) as a voltmethe ordinary voltmeter.	neter over (2mks)
	(b)	An X-ray operates at 30000V and the current through it is 2mA. Given that the charge of an electron is 1.6×10^{-19} C, $h = 6.63 \times 10^{-34}$ JS, speed of light, $C = 3.0 \times 10^{8}$ m/s, calculate:- (i) the maximum kinetic energy of the electrons when hitting the target. (2mks)	

	
(iii) the minimum wavelength of the X-rays emitted. (2mks)	
18. (a) A radioactive carbon-14 decays to nitrogen by beta particles as shown below .	
Determine the values of χ and y. (2mks)	

b) The graph below shows radioactive decay of iodine.

Use the graph to determine the:-

(i) Fraction of the amount remaining after 16.2 days.

(2mks)

(iii)	Determine the half – life of iodine.	(2mks)
(iv)	Mass remaining after 17 days.	
		(1mk)

(1mk)

c) The figure **below** shows the cross-section of a diffusion cloud chamber used to detect radiation from radioactive sources.

(i) State the function of the following:

I Alcohol.

II Solid CO₂. (1mk)

(ii) Explain briefly how the diffusion cloud chamber can be used to detect and identify alpha particles. (3mks)

THE END