

232/2

PHYSICS PAPER2

MARKING SCHEME

- 1. Regulates the amount of current needed for an electric component. $\checkmark 1$
- Ferromagnetic materials contain domains with dipoles facing in different directions for a particular domain ✓ 1. During magnetization, all dipoles are made to face in one direction ✓ 1. At this stage the material is said to be magnetically saturated.
- 3.

- 4. The amount of accelerating potential. $\checkmark 1$
- Thermionic emission requires heat for an electron to be emitted from the surface of the metal ✓ 1 while Photo electric-requires light energy of sufficient frequency for an electron to be emitted from the metal surface. ✓ 1

6. 20×5=40F

F=2.5N√1

Force R=(4-2.5)N

=1.5N \checkmark 1

R is a repulsive force. $\checkmark 1$

- 7. $1/R_e = 1/2 + 1/2$
 - $R_e = 1 \Omega \checkmark 1$ R = V/I

 $I=V/R\checkmark 1$

=3A√1

- 8. Ultra violet radiation $\checkmark 1$
- 9. time between two successive claps=50/20

=2.5 seconds \checkmark 1

Distance travelled by sound to the wall and back=400 $\!\!\times\!\!2$

=800m√1

Speed,s=distance/time

```
=800/2.5
=320m/s\checkmark1
```

10. a)

b) -erect/upright

-real

-Same size as the object

Any two√2

11. X – A beta particle \checkmark 1

 $a - 206 \checkmark 1$ $b - 82 \checkmark 1$

12. The gold leaf becomes more positive as a result of attraction of the negative charge towards the metal cap and as a result, the divergence of the leaf increases. $\checkmark 2$

SECTION B

a) In transverse wave, the vibration of particles is perpendicular to the direction of travel of the wave ✓1 but in longitudinal the vibration is parallel to the direction of the wave travel ✓1

b) i.

ii. The distance between a node and anti node = $\frac{1}{4} \lambda \sqrt{1}$

$$\lambda = 1.0 \text{ x } 10^{-3} \text{ x } 4$$
$$= 4.0 \text{ x } 10^{-3} \text{ m} \checkmark 1$$

c) 5 waves = 6.4 cm

$$\lambda = 6.4/5$$
$$= 1.28 \text{ cm} \checkmark 1$$
$$V = f \lambda \checkmark 1$$
$$= 1.98 \text{ x 8}$$

$$= 1.28 \times 8$$

= 10.24cm/s \checkmark 1

d) 2.5 complete oscillation period T = 0.02/2.5

> =0.008sec \checkmark f=1/T \checkmark =1/0.008 =125Hz \checkmark

14. a) e.m.f is the potential difference across the terminal of a cell in an open circuit. $\checkmark 1$

b) i

R(ohms)	1.6	2.1	2.5	3.6	5	8
i(A)	1	0.8	0.7	0.5	0.37	0.34
1/I (A-1)	1.000	1.250	1.429	2.000	2.703	2.941

 \Box ¹/₂ Mark for each correct entry to 3 d.p \checkmark 3

ii.

 $\Box Axes \checkmark 1$

 \Box Scale \checkmark 1

 \Box Plotting $\checkmark 2$

\Box Line \checkmark 1

iii. Gradient = $1/E\sqrt{1}$

$$=\frac{2.7-1}{5-1.6}$$
$$=0.5\checkmark 1$$

1/E=0.5

E =
$$2.0 \text{ V} \checkmark 1$$

Y - Intercept = r/E

 $= 0.25 \checkmark 1$ **R** = 0.25 x 2.0

= $0.5\Omega\sqrt{1}$ (Allow for error transfer)

-Distance of separation ✓ 1
-Nature of the dielectric ✓ 1

b) 200μ F 300μ F 600μ F

c) i)
$$Q=CV \checkmark 1$$

=6 × 2 × 10⁻⁶
=1.8×10⁻⁵ C $\checkmark 1$

ii) C_e=(2+4)
$$\mu$$
F
=6 μ F \checkmark 1
P.d across 2 μ F=6/2

 $=3V\checkmark 1$ P.d across 4 μ F=6/4 =1.5V $\checkmark 1$

- d) Moving clouds get charge by friction force. The clouds induce positive charges on the spikes of the arrester at the top of the conductor ✓ 1. This makes the earthed plate to become negatively charged ✓ 1. The negative charges on the earthed plate are immediately conducted to the ground through the copper strip ✓ 1.
- 16. a) Is the minimum amount of energy needed to eject/dislodge an electron from a metal surface. $\checkmark\,1$

b) -intensity of the radiation. ✓ 1
-energy of the radiation. ✓ 1

-Type of metal. $\checkmark 1$

© June – July – 2013

Physics 232/2 12 END

c threshold frequency=x-intercept $\checkmark 1$

 $=3.5 \times 10^{14} \text{ HZ} \checkmark 1$

i) eV_s=hf-hf_o

 $V_s = hf/e - hf_o/e$

Slope=h/e

$$=4.07 \times 10^{14} \checkmark 1$$

 $h=4.07{\times}10^{14}{\times}e$

 $= 4.07 \times 10^{14} \times 1.6 \times 10^{-19}$

 $=6.5 \times 10^{-34}$ Js $\checkmark 1$

ii) $W_0 = hf_0 \checkmark 1$ =3.5×10¹⁴×6.5×10⁻³⁴

 $=2.26 \times 10^{-19} \text{J} \checkmark 1$