

PHYSICS PAPER 3 MARKING SCHEME 2020

Question 1

b)
$$e = 2.9v$$

c)

Length L(m)	0.2	0.3	0.4	0.5	0.6	0.7
Current I (A)	0.6	0.52	0.44	0.4	0.35	0.29
$\frac{1}{I}(A^{-1})$	1.67	1.92	2.27	2.5	2.85	3.4

d) Gradient =
$$\Delta \frac{1}{I}(A-1) = 2.5 - 1.67$$

 $\Delta L(m) = 0.5 - 0.2$

$$= \underbrace{0.83}_{0.3} = 2.767 \text{ A}^{-1} \text{m}^{-1}$$

h)i) d arc =
$$0.42$$
mm

ii) X-section area
$$A = 22/7 \times (2.1 \times 10^{-4})^2 = 1.38 \times 10^{-7} \text{m}^2$$

i) Gradient =
$$\frac{K}{AE}$$
 from equation $\frac{1}{I} = \frac{K}{AE}L + \frac{Q}{E}$

but E = 2.9V, A = 1.38 x
$$10^{-7}$$

$$K = 2.767 \text{ x } 1.38 \text{ x } 10^{-7} \text{ x } 2.9 = 1.107 \text{ x } 10\text{-}6 \ \Omega\text{m}$$

$$Q/E = intercept = 1.08A^{-1}$$

$$Q = 1.08 \times 2.9 = 3.132\Omega$$

Question 2

U(cm)	40	45	50
V(cm)	39	35	32
Magnification $\frac{v}{u}$	0.98	0.78	0.64

$$F = \frac{v}{m+1}$$

$$F_1 = 39 = 19.6$$

$$0.98 + 1$$

$$F_2 = 395 = 19.7$$

$$F_3 = 32 = 19.5$$

F avg =
$$\frac{19.6 + 19.7 + 19.5}{3}$$
 = 19.6cm

$$Favg = 19.6$$

PART B.

You are provided with the following:

- rubber bung.
- vernier calipers.
- beam balance.

Proceed as follows:

- Kreel & chall grand grand from worka) Using a vernier caliper, measure the lengths D, d, and h as shown in figure 2. Figure 2 0.0253 M \$ 0.0030 D = ______ m (1 mark) d= m 0.070 M (1 mark) h = m 0.0281M (1 mark) $M = \frac{1}{2} \frac{1}{2}$ b) (i) Measure the mass, M of the rubber bung using the beam balance. (iii) Determine the value of r given that $\pi r = \frac{h}{h}$

SECTION C

a)
$$G = 50 \pm 0.5$$
cm

b)
$$p = 58.6cm$$

c)when $y = 5cm$, $x = 8.6 cm$
W $x = 50/100 \times 8.6$
W $= 0.05 \times 8.6/5 = 0.086N$