

TRIAL ONE EVALUATION TEST

PHYSICS PAPER TWO MARKING SCHEME

1. Angle of incidence $=\frac{70^{\circ}}{2}=35^{\circ}$ Angle of reflection $=35^{\circ}\checkmark$ New angle of reflection $=35^{\circ}+(2 \ge 20)^{\circ}$ $=75^{\circ}\checkmark$

2. Magnetism is easily induced in them \checkmark . The dipoles of the keepers form a closed loop \checkmark with those in

the magnets hence protecting the magnets from being demagnetized;

3.(a) W – Microwave√ (b) Uses – Cooking

- Communication ✓ Any one @

4.(a) Transverse waves are waves whose particles are displaced perpendicular to the direction of travel whereas longitudinal waves are waves whose particles are displaced parallel to the direction of travel. \checkmark

(b) T= 2.0 sec,
$$\checkmark f = \frac{1}{T} = \frac{1}{2} = 0.5 \ hz \checkmark$$

5. a) speed= 2d/t
 $= \frac{400 \ x \ 2}{2.5} \checkmark$
 $= 320 \ mls \checkmark$
b) $320 = 2 \ (x - 400)$
 $4.5 \checkmark$
 $x - 400 = \frac{320 \ x \ 4.5}{2}$
 $X - 400 = 720$
 $x = 1120m \checkmark$

6.To concentrate the magnectic field \checkmark

7. More information can be transmitted at the same time since there is minimal loss of energy during transmission.
8.-number of turns on the coil ✓
-strength of magnet ✓

9.

10.

11.-The relative density ✓ -The voltage ✓

12. Accumulation of hydrogen gas on the copper plate insulates the copper plate which prevents further reaction

13(a) (i) = V = IR
$$\Rightarrow$$
 R = $\frac{V}{I}$
= $\frac{12}{2}$ \checkmark
= 6Ω \checkmark
(ii) Y, Z are parallel
 $\frac{1}{R_P} = \frac{1}{6} + \frac{1}{6}$
 \Rightarrow $P_P = 3\Omega$ \checkmark
X in series with P_P
 \Rightarrow $R_T = (6 + 3)$
= 9Ω \checkmark
(iii) I = $\frac{V}{R}$ \checkmark
= $\frac{12}{9}$
= 1.33A \checkmark
(iv)

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

√ √

Ecolebooks.com

(b) (i) E.m.f = 1.5V (ii) Terminal voltage = 1.3V (iii) $R = \frac{V}{I}$ $= \frac{1.3}{0.5}$ $= 2.6\Omega$

15. a) state two factors that determine the capacitance of parallel place capacitor

-area of plates \checkmark

-nature of dielectric \checkmark

-distance between the plates \checkmark

b) A 5 μ capacitor is charged to a potential of 200v and isolated . it is then connected to a $10\mu F$ capacitor

i) find the resultant potential difference across combination

 $Q = Q_1 + Q_2$ $1x10^{-3} v$ $1x10^{-3} = 15 x10^{-6} \checkmark$ $Q = 5x10^{-6} x200 \checkmark$ $1x10^{-3}/5x10^{-6} = 6667v \checkmark$ (3MKS)

ii) energy stored in the capacitors after connection

 $E = \frac{1}{2} \times 15 \times 10^{-6} \times 200^{2} \checkmark = 0.1 \text{ joules} \checkmark$

(2mks)

(2mks)

ii0)total energy in the capacitors after connection

 $E = \frac{1}{2} \times 15 \times 10^{-6} \times 66.67^2 \checkmark$

⁼0.00333367 joules ✓

(14)(i) Long sighted. \checkmark

(ii) Using converging lens to shortly converge he rays from a near object on the retina \checkmark

Ecolebooks.com

(c) Eye lens is variable, camera is fixed

a) Give one application of capacitors

- smoothening rectified circuits \checkmark
- Reduction of sparking in induction coils in tuning√

- 16 a)(i) Is to provide coherent sources $\sqrt{1}$
 - ii) Alternating dark and bright fringes $\sqrt{1}$
 - Dark fringes due to destructive interference $\sqrt{1}$
 - Bright fringes due to constructive interference√1
 - iii) I. Increased distance between the fringes √1II) Coloured fringes are formed√1

17.(a) (i) Dispersion of white light \checkmark (ii) X - Red \checkmark Y - Violet \checkmark

(b) (i) $_{a}n_{g} = \frac{C}{V} \checkmark$ = $\frac{3.0 X 10^{8}}{1.8 X 10^{8}} \checkmark$ = 1.6667 \checkmark

DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**

Ecolebooks.com

