

LANJET CLUSTER JOINT MOCK EXAM PHYSICS PAPER 3 DECEMBER 2020 MARKING SCHEME

QUESTION ONE (PART A)

(a) Mass of marble (mark students value) √½

(d) Table 1

Award 2 marks for complete table values.

Correct to 2d.p. for time of oscillation and at least 2d.p. for periodic time.

Award 1 mark for complete table without adherence to accuracy.

Award 0 for incomplete table.

T = 0.70s (Use students averaged with a range of \pm 0.02s \checkmark ½

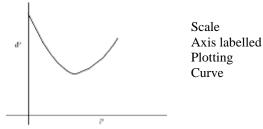
(e) $d = 1.70 \text{cm} \pm 0.05 \text{cm} \checkmark \frac{1}{2}$ $r = 0.85 \text{cm} \checkmark \frac{1}{2}$

(f)
$$V = \frac{4}{3} \times 3.142 \times (0.85)^3$$

= 2.573cm³ \checkmark 1

(g)
$$R = r + \frac{5gT^2}{7(2\pi)^2} \checkmark 1$$

$$= \frac{5 \times 9.8 \times (0.70)^2}{7 \times (2 \times 3.142)^2} + 0.85$$


$$= 0.9369 \text{cm} \sqrt{1}$$

QUESTION 1 PART B

(d)
$$60^{\circ}$$

(L) Values of d decrease, then increase. Mark the trend. (8 marks)

m).

- (n) Read from the graph the minimum value for d (30^0)
- (p) Numerator and evaluated Denominator and evaluated Substitution

^{*} Check substitution and answer of the student.

Ecolebooks.com

Accuracy, n = 1.5

QUESTION 2.

1. b) $I = 0.12 \pm 0.01 \text{A}^{1}$ $V = 2.6 \pm 0.1 \text{V}^{1}$ c) $E = 3.3 \pm 0.2 \text{V}^{1}$ maximum range, E = 3.5

d)

Length L (cm)	100	70	60	50	40	20
I (A)	0.12	0.19	0.2	0.24	0.28	0.42
P.d (V)	2.6	2.5	2.4	2.35	2.3	2.0
E-V(v)	0.9	1.0	1.1	1.15	1.2	1.5

Use the E of the student in the row containing the values of E-V(f)

Ecolebooks.com

f) Slope =
$$\frac{\Delta(E-V)}{\Delta I} \checkmark 1 = \frac{1.5-0.9}{0.42-0.12} \checkmark 1 = \frac{0.6}{0.3} = 2\Omega$$

g)
$$E = V + Ir$$

$$\begin{aligned} E - V &= rI + C \checkmark^1 \\ r &= internal \ resistance = slope = 2\Omega \ \checkmark^1 \end{aligned}$$

DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**

Ecolebooks.com

