

Marking scheme

232/3

PHYSICS PAPER 3

(PRACTICAL)

TIME: 2 ½ hours

MOMALICHE JOINT EXAMINATION

Kenya Certificate of Secondary Education

PHYSICS (PRACTICAL) Paper 3

TIME: 2 1/2 HOURS

Instructions

- Write your name, index number and admission number in the spaces provided above.
- Sign and write the date of examination in the spaces provided above.
- Answer ALL questions in the spaces provided in the question paper.
- You are supposed to spend the first 15 minutes of the 2 ½ hrs allowed for this paper reading the whole paper carefully before commencing your work.
- Marks are given for a clear record of the observations actually made, their suitability, accuracy and the use made of them.
- Candidates are advised to record their observations as soon as they are made.
- Non-programmable silent electronic calculators and KNEC mathematical tables may be used except where stated otherwise.
- This paper consists of 8 printed pages.
- Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

For Examiner's Use Only

Question 1	c	d	g	Н	i	(j)	(k)		TO	OTAL
Maximum Score	1	1	8	5	2	2	1			20
Candidate's Score										
		С	e	f	g	h	i	j	k	TOTAL
Question 2										
Maximum Score		1		6		5	3	3	2	20
Candidate's Score										40

DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**

On	estion	one
Vu	esuon	one

GRAND TOTAL

You are provided with the following:

- 2 new dry cells size D
- A cell holder
- A switch
- A milliammeter of range 0 to 1 mA
- A capacitor labeled C
- 8 connecting wires; at least four with crocodile clips on one end
- A stopwatch
- A carbon resistor labeled **R**

Proceed as follows

a. Connect the circuit as shown in the **figure 1** below, where $\bf P$ and $\bf Q$ are crocodile clips.

- b. Close the switch **S**
- c. Name the process which takes place when the switch S is closed

d. Connect the crocodile clips P and Q. Observe and record the highest reading of the milliammeter I_0 (This is the current at $t_0 = 0$)

$$I_o = 0.61 \text{ mA} + 0.02 \text{ (1 mark)}$$

- e. While the milliammeter show the maximum value of current I_o , open the switch S and start the stop watch simultaneously. Stop the stop watch when the current has dropped from I_o to 0.5 mA. Read and record in the table below the time taken
- f. Reset the stop watch and close the switch. Repeat the procedure in (e) to measure and record the time taken for the current to drop from I_0 to each of the other values shown in the table below. (8 marks)

Current I (mA)	0.5	0.4	0.3	0.2	0.1
Time t (s)	0.20	0.26	3.7	6.50	8.6

g. Plot a graph of Current I(y - axis)(mA) against time t(s) (5 marks)

h. From your graph, find **W** the value of **I** when $\mathbf{t} = \mathbf{10s}$. W = 0.23

(3 marks)

(confirm the value from graph)

i. Given that A = 10W, determine the value of A.

(3 marks)

 $A = 10 \times 0.23 \times 10^{-3}$

j. Determine the voltage across **R** at $\mathbf{t} = \mathbf{10s}$ given that $\mathbf{R} = 4.7k\Omega$

(2 marks)

V = IR

 $= 2.3 \times 10^{-4} \times 4.7 \times 10^{3}$

Question Two

You are provided with the following;

- a rectangular glass block
- 4 optical pins
- 2 thumb pins
- a soft board
- a plain paper

Proceed as follows:

(a) Place the glass block on the plain paper with one of the largest face upper most. Trace round the glass block using a pencil as shown below.

(b) Remove the glass block and construct a normal at B. Construct an incident ray AB of angle of incidence, $i=20^{\circ}$.

(c) Measure the breadth **b** of the glass block

breadth **b** =
$$6.0^{+}_{-}0.2$$
 (1 mark)

- (c) Replace the glass block and trace the ray ABCD using the optical pins.
- (d) Remove the glass block and draw the path of the ray ABCD using a pencil.
- (e) Measure the length L and record it in the table below

Angle i ⁰	L (cm)	L ² (cm) ²	$\frac{1}{L^2} (\text{cm-}^2)$	Sin ² i
20	6.2			0.1170
30	6.4			0.25
40	6.7			0.4312
50	7.1			0.5868
60	7.4			0.75
70	7.6			0.8830

(6 marks)

- (f) Repeat the procedure above for the angles of incidence given.
- (g) Calculate the values of $\frac{1}{L^2}$ and record in the table above.

(h) Plot a graph of $\frac{1}{L^2}$ (y-axis) against Sin²i.

(5 marks)

(i) Calculate the gradient **S** of the graph

Slope =
$$\frac{\Delta_2^{\frac{1}{2}}}{\Delta sin^2} = \frac{(24-10)x \ 10^{-3}}{(14-3)x \ 10^{-1}} = \frac{0.14}{1.1}$$

= 0.0127272 cm⁻²

DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**

Given that the equation of that graph is; $\frac{1}{L^2} = -\left(\frac{1}{n^2b^2}\right) \sin^2 i + \frac{1}{b^2}$

(j) Determine the value of n

(3 marks)

Gradient =
$$0.017272 = \frac{1}{n^{2b^2}}$$

 $\frac{1}{n^2} = 0.4581812$

$$n = 1.47734$$

(k) Present your work sheet; attached to the exam paper

(2 mark)

Confirm that the student

Presents a correct worked out diagram