

Name	Index No/
School	Candidates Signature
Date	
231/1	
BIOLOGY	
THEORY	
Paper 1	
2 Hours	

MERU CENTRAL EXAMS

Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO CANDIDATES

- Write your name and Index Number in the spaces provided above.
- Sign and write date of examination in the spaces provided above.
- Answer **ALL** questions in the spaces provided.
- All workings **MUST** be clearly shown where necessary.

For Examiners use only.

Question	Maximum Score	Candidates Score
1 25	00	
1-25	80	

This paper consists of 11 Printed pages.

Candidates should check the question paper to ensure that all the

Papers are printed as indicated and no questions are missing

1. The graph below represents the growth pattern of animals in a certain phylum.

a)	Name the type of growth curve shown above.	(1mk)
----	--	-------

.....

- b) i) Identify the process represented by \mathbf{X} . (1mk)
-
 - ii) Name the hormone responsible for the process in b(i) above. (1mk)

.....

c) State the importance of the growth of a pollen tube to a plant. (1mk)

.....

2. a) What is the function of Sodium hydrogen Carbonate that is added to test solution of non-reducing sugar. (1mk)

b) The equation below represents a process X which is controlled by enzy.

$$C_6 H_{12} O_6 + C_6 H_{12} O_6$$
 R $C_{12} H_{22} O_{11} + H_2 O$

Glucose + Fructose

i) Name the process \mathbf{X} and enzyme \mathbf{R}

Process	X	(1mk)
----------------	---	-------

3. The diagram shows an epidermal cell undergoing mitotic cell division.

i) Name the	stage of	mitosis	it represer	its
-------------	----------	---------	-------------	-----

.....(1mk)

ii) Name the structures

A(1mk)

C.....(1mk)

4. What is the effect of gibberellins on the shoots of plants? (4mks)

5. ((a) Give tv	wo forms in which carbon (IV) oxide is transported in human blood.	(2mks)
	•••••		
	•••••		
	•••••		•••••
		e the enzyme that enhances the loading and off – loading of carbon (IV) n blood.	(1mk)
6. fisl	a) h. (2mks)	What is the importance of the counter current flow in the exchange of	gases in a
• • •			
• • •	b)	State two ways in which the tracheoles of an insect are adapted to the	ir functions.
(2r	nks)		
• • •			
• • •			• • • • • • • • • • • • • • • • • • • •

7. The equation below represents a reaction that occurs during respiration in a cell.

		K + Phosphate Adnenosine triphosphate	e
	a)	Identify the compound K.	(1mk)
•••••	b)	State <u>two</u> differences between K and ATP .	(2mks)
	• • • • • • • • •		
	c) (1mk)	Name the organelle responsible for the production of energy in a cell	
8.	Explair (2mks	in how crops grown along roads can be a source of lead poisoning to his)	uman beings.
9.		in why plants growing in low altitude areas grow faster than those in hi	
10.		own four phenotypic characteristics that have been selected for the prossuitable for modern agricultural purposes.	duction of (4mks)

	•••••		• • • • • • • • • • • • • • • • • • • •
11.	Nam	e the type of eye defects that can be corrected by;	
11.			(1 1-)
	i)	Use of bifocal lens	(1mk)
	•••••		
	ii)	Use of artificial lens	(1mk)
	11)	Ose of artificial lens	(IIIK)
	•••••		• • • • • • • • • • • • • • • • • • • •
	:::\	Use of concave lens	(1 mlr)
	iii)	Use of concave lens	(1mk)
12.		The length from the tail tim to the annual of a contain tilenia fish is 10	
12.	a)	The length from the tail tip to the anus of a certain tilapia fish is 10	
	_	th from the tail tip to the mouth is 35cm. Calculate the tail power of the second seco	the fish. (Show
	all yo	our working). (2mks)	

b) What is the signif	ficance of high tail power in fish? (1
List down three difference	ces between the endocrine system and nervous system. (3
Endocrine system	n Nervous system
i.	i.
ii	ii
•••	
iii	iii
Distinguish between the	struggle for existence and survival for the fittest as used in t
theory of natural selectio	on.
(2mks)	

15. The body temperatures of two animals A and B varied as below with environmental Temperature

`	*****		. 1			•
a	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	h ot	the	animal	C	10.
\mathbf{a}	/ YY 111C1	u oi	uic	amma	.0	10.

- i) Endothermic (1mk)
- ii) Ectothermic (1mk)
- b) With a reason, state which of the animals is likely to be widely distributed (2mks)

16. State three roles of oestrogen during the menstrual cycle (3mks)

.....

.....

17. State three characteristics of cells at the zone of cell division in an apical merintem(3mks)

.....

_						
Eco	ומו	20	വ	/C	\boldsymbol{c}	m
LUU	וכו	JU	UI	\3 .	uU	

18.	Below are diagrams of three leaves A, B and C. Construct a t	wo step dichotomous
key v	which can be used to identify each of them.	(4mks)
	A B	C
 19.	a) Name two mutagenic agents.	2mks)
b) Ide	entify the type of gene mutations represented by the following p i) Shirt instead of skirt	pairs of words.
	ii) Hopping instead of shopping	, ,
20.	Liver damage leads to impaired digestion of fats. Explain thi	

21. Explain why several lateral buds sprout when a terminal bud in a young tree is removed. (3mks)

Ecolebooks.com 22. State two structural adaptations that make xylem vessels suitable for transport of (a) water and mineral salts. (2mks) List any **three** adaptations of the root hair cells to their functions (b) (3mks)23. (a) Define the following terms:-(2mks)(i) Species:

	(ii)	Binomial nomeno	lature:-			
4. '	What is the si	ignificance of active	e transport in	the human bo	ody.	(3mks)
			•••••			
		•••••				
	25. Explain h joint of the el	ow the biceps and t bow in man.	riceps muscle	es bring abou	t the movemer	nt at the hinge (2mks)
•	•••					
		•••••				

