TURNING EFFECT OF FORCES

Specification

TURNING EFFECT

know and use the relationship:

moment = force × perpendicular distance from the pivot

know that the weight of a body acts through its centre of gravity

know and use the principle of moments for a simple system of parallel forces acting in one plane

understand that the upward forces on a light beam, supported at its ends, vary with the position of a heavy object placed on the beam

The moment of a force

Also known as the **turning effect** of a force.

The **moment of a force** about any point is defined as:

moment = force x perpendicular distance from the pivot

moment = F x d

Unit: newton-metre (Nm)

Moments can be either **CLOCKWISE** or **ANTICLOCKWISE**

Force F exerting an ANTICLOCKWISE moment through the spanner on the nut

Calculate the moment exerted with the claw hammer if the person exerts a force of 8oN and distance d equals 25cm.

moment = F x d

- = 80N x 25cm
- $= 80N \times 0.25m$
- = 20 Nm CLOCKWISE

Complete:

Answers

Force (N)	Distance	Moment (Nm)
40	3 m	
200		1000
	4 m	200
3000	20 cm	

Complete:

Answers

Force (N)	Distance	Moment (Nm)
40	3 m	120
200	5 m	1000
50	4 m	200
3000	20 cm	600

Choose appropriate words to fill in the gaps below:

The 'moment of a force' is an effect of force'.	other name	for the	<u> </u>
The moment of a force is equa	al to the	r	nultiplied by
the perpendicular	between th	e line of	of
the force and the turning poin	nt.		
Turning effect is measured in		metres.	
can be either cloc	kwise or ar	ıticlocky	vise.

WORD SELECTION:

moments force distance newton turning action

Choose appropriate words to fill in the gaps below:

The 'moment of a force' is another name for the 'turning effect of force'.

The moment of a force is equal to the <u>force</u> multiplied by the perpendicular <u>distance</u> between the line of <u>action</u> of the force and the turning point.

Turning effect is measured in <u>newton</u> metres.

moments can be either clockwise or anticlockwise.

WORD SELECTION:

moments force distance newton turning action

Centre of gravity

The centre of gravity of a body is that point at which the weight of the body acts.

The centre of gravity of a symmetrical body is along the axis of symmetry.

Centre of gravity is also sometimes called centre of mass.

centres of gravity of regular shapes

If suspended, a body will come to rest with its centre of gravity directly below the point of suspension.

Finding the centre of gravity of a card

Pierce the card in at least two places.

Suspend the card from one of these holes.

Hang a plumbline from the point of suspension.

Using the plumbline as a reference draw a vertical line on the card.

Repeat for the other hole(s).

The **centre of gravity** is where the lines cross on the card.

Stability

able balanced

unstable - toppling

A body is stable as long as its centre of gravity remains vertically above its base.

If this is not the case, the body will topple.

What factors make a modern racing car as stable as possible?

- 1. A wide wheel base.
- 2. A low centre of gravity.

The principle of moments

When an object is not turning (e.g. balanced):
The total clockwise moment equals the total
anticlockwise moment

If the ruler above is balanced:

clockwise moment = anticlockwise moment

$$W_2 \times d_2 = W_1 \times d_1$$

On a see-saw Mary, weight 600N balances John, weight 200N when she sits 1.5m away from the pivot. How far from the pivot is John?

On a see-saw Mary, weight 600N balances John, weight 200N when she sits 1.5m away from the pivot. How far from the pivot is John?

Applying the principle of moments:

Mary's weight x distance = John's weight x distance

 $600N \times 1.5m = 200N \times distance$

900 = 200 x *distance*

900 ÷ 200 = **distance**

John is 4.5m from the pivot

Calculate the weight of the beam, W_o if it is balanced when:

$$W_1 = 6N;$$

 $d_1 = 12 \text{ cm};$
 $d_0 = 36 \text{ cm}.$

Calculate the weight of the beam, W_o if it is balanced when:

$$W_1 = 6N;$$

 $d_1 = 12 \text{ cm};$
 $d_0 = 36 \text{ cm}.$

Applying the principle of moments:

$$W_1 \times d_1 = W_0 \times d_0$$

$$6N \times 12 \text{ cm} = W_0 \times 36 \text{ cm}$$

$$W_0 = 72 / 36$$

 W_o the weight of the beam = 2N

Complete for a balanced ruler:

W ₁	d ₁	W_2	d_2
5 N	20 cm	10 N	
4 N	15 cm		10 cm
6 N		2 N	36 cm
	25 cm	2 N	100 cm

Complete for a balanced ruler:

W ₁	d ₁	W ₂	d ₂
5 N	20 cm	10 N	10 cm
4 N	15 cm	6 N	10 cm
6 N	12 cm	2 N	36 cm
8 N	25 cm	2 N	100 cm

Forces on a beam or bridge

Column A

Column B

When the lorry is at the centre of the bridge its weight will be supported equally by the two columns A and B.

When the lorry was over columns A all of its weight would have been supported by this column

When the lorry is ¾ the way across the bridge column B will bear ¾ of its weight. Column A bears the remaining ¼.

What are the column forces when the lorry is one third the way across the bridge?

Choose appropriate words to fill in the gaps below:

The turning effect a force. Moment is		is also called the metres.	of
If a body is balanc the total	ed the total clo		to
A body will beabove theto reduce the possi	of the body. A	tre of gravity lies verticall tractor has a large whee 	

WORD SELECTION:

toppling anticlockwise newton moment equal stable force base

Choose appropriate words to fill in the gaps below:

The turning effect of a <u>force</u> is also called the <u>moment</u> of a force. Moment is measured in <u>newton</u> metres.

If a body is balanced the total clockwise moment is <u>equal</u> to the total <u>anticlockwise</u> moment.

A body will be <u>stable</u> if its centre of gravity lies vertically above the <u>base</u> of the body. A tractor has a large wheel base to reduce the possibility of it <u>toppling</u>

WORD SELECTION:

toppling anticlockwise newton moment equal stable force base