Download more resources like this on ECOLEBOOKS.COM

INDICES AND LOGARITHMS

1

Content

Laws of Indices – Some Properties of Indices – Definition of Logarithms – Some Properties of Logarithms

Laws of Indices

 $a^p a^q = a^{p+q}$

 $(ab)^p = a^p b^p$

 $a^p/a^q = a^{p-q}$

 $\left(a/b\right)^p = a^p/b^p$

$$\left(a^{p}\right)^{q}=a^{pq}$$

Some Properties of Indices

$$a^{0} = 1$$

$$a^{-p} = 1/a^p$$

$$a^{1/q} = \sqrt[q]{a}$$

$$a^{p/q} = \sqrt[q]{a^p}$$

4

Download more resources like this on ECOLEBOOKS.COM

Proof of the properties

To prove:
$$a^0 = 1$$

Let
$$a^0 = c$$
.

Then $a^p \cdot c = a^p \cdot a^0 = a^p$

$$\Rightarrow a^0 = 1$$

5

To prove:
$$a^{-p} = 1/a^p$$

Let $a^{-p} = d$.

Then $a^{p} \cdot d = a^{p} \cdot a^{-p} = a^{0} = 1$

$$\Rightarrow a^{-p} = 1/a^p$$
.

To prove:
$$a^{1/q} = \sqrt[q]{a}$$

Let
$$a^{1/q} = f$$
.

Then
$$f^{q} = (a^{1/q})^{q} = a^{1} = a$$

$$\Rightarrow a^{1/q} = \sqrt[q]{a}.$$

To prove:
$$a^{p/q} = \sqrt[q]{a^p}$$

$$a^{p/q} = \left(a^p\right)^{1/q} = \sqrt[q]{a^p}.$$

Definition of Logarithms

The log of x to the base a, written as $\log_a x$ is the value y such that $a^y = x$, i.e.,

$\log_a x = y \iff a^y = x,$

where a > 0 and $a \neq 1$, x > 0.

Particular Cases:

 $log_{a} 1 = ?$ $log_{a} (a^{m}) = ?$ $log_{a} (a^{m}) = m$ $log_{a} (a^{m}) = m$ $log_{a} (a^{m}) = m$ $log_{a} (a^{m}) = b$

Common Logarithm (a = 10):

 $\log_{10} x \text{ or simply } \log x$ Natural Logarithm (a = e = 2.71828...): $\log_{e} x \text{ or simply } \ln x$

Some Properties of Logarithms

 $\log_{a} xy = \log_{a} x + \log_{a} y$ $\log_{a} (x/y) = \log_{a} x - \log_{a} y$ $\log_{a} x^{n} = n \log_{a} x$ $\log_{a} x = \frac{\log_{b} x}{\log_{b} a}$

To prove:
$$\log_a xy = \log_a x + \log_a y$$

Let $\log_a x = u$ and $\log_a y = v$ Then $a^u = x$ and $a^v = y$ $\Rightarrow xy = a^u a^v = a^{u+v}$ $\Rightarrow \log_a xy = \log_a a^{u+v} = u + v = \log_a x + \log_a y$

To prove:
$$\log_a x^n = n \log_a x$$

Let $\log_a x = u$ Then $a^u = x$ $\Rightarrow x^n = (a^u)^n = a^{nu}$ $\Rightarrow \log_a x^n = \log_a a^{nu} = nu = n \log_a x$

To prove:
$$\log_a (x/y) = \log_a x - \log_a y$$

 $\log_a (x/y) = \log_a x + \log_a (1/y) = \log_a x + \log_a y^{-1}$ $= \log_a x - \log_a y$

To prove:
$$\log_a x = \frac{\log_b x}{\log_b a}$$

Let $\log_a x = u$ Then $a^u = x$ $\Rightarrow \log_b a^u = \log_b x$ $\Rightarrow u \log_b a = \log_b x \Rightarrow u = \frac{\log_b x}{\log_b a}$

Exercises

1. If $\log_2 12 = 3.58$, then what is $\log_2 \frac{1}{24}$?

