

Mathematics

and

Straight Lines

$x=x+20+x=x+2+x$

8

Session Objectives

Session Objectives

1. Definition of straight line - locus
2. Slope of a line
3. Angle between two lines
4. Intercepts of a line on the axes
5. Slope, intercept form
6. Point, slope form
7. Two-point form
8. I ntercepts form
9. Normal form
10.Parametric or distance form

Locus definition of a straight line

A straight line is the locus of a point whose coordinates satisfy a linear equation

Slope - Concept

Slope

θ is always
 w.r.t. x'OX

Slope

slope $+\mathrm{ve} \Leftrightarrow \theta$ is acute slope - ve $\Leftrightarrow \theta$ is obtuse
$\theta=0^{\circ} \Leftrightarrow$ slope $=0$
$\theta=90^{\circ} \Leftrightarrow$ slope $=$?

Infinite?

Not infinite. It is not defined.
Slope is usually denoted by

Slope in terms of points on a line

$$
\tan \theta=\frac{\mathrm{QN}}{\mathrm{PN}}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{\text { difference of ordinates }}{\text { difference of abcissae }}
$$

Slope of reflection in either axis

Slope of a line $=\mathrm{m} \Leftrightarrow$ slope of reflection $=-\mathrm{m}$

Angle between two lines

$$
\begin{aligned}
& \quad \begin{array}{l}
\quad \begin{array}{l}
\theta_{2}=\theta+\theta_{1} \\
\therefore \theta=\theta_{2}-\theta_{1} \\
\therefore \tan \theta=\tan \left(\theta_{2}-\theta_{1}\right) \\
\theta_{2} \\
\theta_{1}
\end{array} \\
r^{*} \quad \tan \theta=\frac{\tan \theta_{2}-\tan \theta_{1}}{1+\tan \theta_{2} \tan \theta_{1}}
\end{array} \\
& \text { Also } \tan (\pi-\theta)=-\tan \theta=-\frac{\tan \theta_{2}-\tan \theta_{1}}{1+\tan \theta_{2} \tan \theta_{1}}
\end{aligned}
$$

$$
\tan \theta= \pm \frac{m_{2}-m_{1}}{1+m_{1} m_{2}}
$$

Parallel lines

$\tan \theta=0$

$\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}=0$

$$
\therefore \mathrm{m}_{1}=\mathrm{m}_{2}
$$

Perpendicular lines

$\cot \theta=0$

$\frac{1+\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{2}-\mathrm{m}_{1}}=0$
$\therefore \mathrm{m}_{1} \mathrm{~m}_{2}=-1$

Illustrative example

Let $A(6,4)$ and $B(2,12)$ be two points. Find the slope of a line perpendicular to $A B$.

Solution:

$$
\begin{aligned}
& m_{1}=\frac{12-4}{2-6} \\
& \therefore m_{1}=-2 \\
& m_{1} m_{2}=-1 \\
& \therefore m_{2}=\frac{1}{2}
\end{aligned}
$$

Intercepts on x axis y axis

x Consider a line cutting the axes in A and B

$\mathrm{OA}=x$-intercept
$\mathrm{OB}=\mathrm{y}$-intercept

Slope intercept form

Consider a line making an angle θ with the x-axis and an
Consider a point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ on it intercept c with the y -axis

$$
\begin{aligned}
& \text { Slope }=m=\tan \theta=\frac{P M}{Q M}=\frac{y-c}{x} \quad 0 \quad \text { Coefficient of } \\
& y=m X+C .0 \quad y=1
\end{aligned}
$$

Illustrative example
Find the equation of a line which makes an angle of $\tan ^{-1}(3)$ with the x-axis and cuts off an intercept of 4 units with the negative direction of the y-axis.

Solution :

Slope $m=\tan \theta=3, y$-intercept $c=-4$
\therefore the required equation is $y=3 x-4$.

Locus definition of a straight line

Condition 1: A point on the line is given

Any number of lines may pass through a given point.

Condition2: Direction of the line is given

Any number of lines can lie in a certain direction.

Point slope form

Consider a line passing through P ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and having a slope m .

Consider any point $\mathrm{Q}(\mathrm{x}, \mathrm{y})$ on it.

$$
\begin{aligned}
& \text { slope } m=\frac{y-y_{1}}{x-x_{1}} \\
& y-y_{1}=m\left(x-x_{1}\right)
\end{aligned}
$$

BUT ONLY ONE

 straight line can pass through a given point in a given directionIllustrative example
Find the equation of the perpendicular bisector of the line segment joining the points $A(-2,3)$ and $B(6,-5)$

Solution:

Slope of $A B=\frac{3+5}{-2-6}=-1$
Slope of perpendicular $=1$
Perpendicular bisector will pass through midpoint of $A B$ which is $(2,-1)$
\therefore the required equation is $y+1=x-2$ or $y=x-3$

Two point form
Consider a line passing through P $\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$.
slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Using point slope form,

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)
$$

Illustrative example
Find the equation of the medians of the triangle $A B C$ whose vertices are $A(2,5), B(-4,9)$ and $\mathrm{C}(-2,-1)$ through A

Solution:

Let the midpoints of $B C, C A$ and $A B$ be D, E and F respectively
By section formula,
$D \equiv(-3,4), E \equiv(0,2)$ and $F \equiv(-1,7)$
Using two point form,

$$
A D \equiv y-5=\frac{4-5}{-3-2}(x-2) \equiv x-5 y+23=0
$$

Intercepts form

Consider a point $P(x, y)$ on it.
Area of $\triangle O P B+$ Area of $\triangle O P A=$ Area of $\triangle O A B$
$\therefore \frac{1}{2} b x+\frac{1}{2} a y=\frac{1}{2} a b \frac{x}{a}+\frac{y}{b}=1$

Illustrative example

Find the equation of a line which passes through $(22,-6)$ and is such that the x -intercept exceeds the y-intercept by 5 .

Solution :

Let the y-intercept $=c$.
\therefore the x -intercept $=\mathrm{c}+5$
\therefore Intercept form of line is given by $\frac{22}{c+5}-\frac{6}{c}=1$
As this passes through (22,-6)

$$
\frac{22}{c+5}-\frac{6}{c}=1
$$

Solution Cont:
$\therefore c^{2}-11 c+30=0$
$\therefore(c-5)(c-6)=0$
$\therefore c=5$ or $c=6$
\therefore the required equation is
$\frac{x}{10}+\frac{y}{5}=1$ or $\frac{x}{11}+\frac{y}{6}=1$

Rearranging,
$x+2 y-10=0$ or $6 x+11 y-66=0$

Normal form

Consider a line meeting the axes at A and B, at a distance
$=O Q$ from the origin making an angle α with the x-axis.
Consider a point $P(x, y)$ on this line.
Draw $\mathrm{PL} \perp \mathrm{OX}, \mathrm{LM} \perp \mathrm{OQ}$ and $\mathrm{PN} \perp \mathrm{LM} . \angle \mathrm{PLN}=\alpha$ $\mathrm{p}=\mathrm{OQ}=\mathrm{OM}+\mathrm{MQ}=\mathrm{OM}+\mathrm{NP}=\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha$

Illustrative example
The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of y-axis. Find the equation of the line.

Solution :

$p=7$ and $\alpha=30^{\circ}$
Therefore, the required equation is :
$x \cos 30^{\circ}+y \sin 30^{\circ}=7$
$\therefore \frac{\sqrt{3} x}{2}+\frac{y}{2}=7$
$\therefore \sqrt{3} x+y-14=0$

Distance or parametric form

Consider a line passing through $\mathrm{Q}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and making an angle θ with the $X^{\prime} O X$.
Consider a point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ on this line at a distance r from Q .
$\cos \theta=\frac{x-x_{1}}{r}, \sin \theta=\frac{y-y_{1}}{r}$

$$
\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r
$$

Distance or parametric form

$$
\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r
$$

Can also be written as

$$
\begin{aligned}
& x=x_{1}+r \cos \theta \\
& y=y_{1}+r \sin \theta
\end{aligned}
$$

Illustrative example
The slope of a straight line through $A(3,2)$ is $3 / 4$. Find the coordinates of the points on the line that are 5 units away from A.

Solution

The equation of the line is:

$$
\begin{aligned}
& x=3+r \cos \theta, y=2+r \sin \theta \\
& \theta=\tan ^{-1}(3 / 4) \rightarrow \sin \theta=3 / 5, \cos \theta=4 / 5 . \\
& r= \pm 5 \\
& x=3 \pm 5 \cos \theta, y=2 \pm 5 \sin \theta \rightarrow x=3 \pm 4, y=2 \pm 3
\end{aligned}
$$

The required coordinates are $(7,5)$ and $(-1,-1)$

Trace the straight lines whose equations are as follows.
(i) $x+2 y+3=0$
(ii) $2 x-3 y+4=0$

Solution

$$
x+2 y=-3
$$

x-intercept $=-3$ i.e. line pass through ($0,-3 / 2$)
y-intercept $=-3 / 2$ i.e. line pass through $(-3,0)$

Solution
$2 x-3 y+4=0$
$2 x-3 y=-4$
$\frac{x}{-2}+\frac{y}{\frac{4}{3}}=1$ Intercept form

Class Exercise - 2

Find the equation of the lines passing through the following points.
(i) $(0,-a)$ and $(b, 0)$
(ii) $\left(\mathrm{at}_{1}, \frac{a}{t_{1}}\right)$ and $\left(\mathrm{at}_{2}, \frac{a}{t_{2}}\right)$

Solution

(i) $y-0=\frac{0-(-a)}{b-0}(x-b)$

$$
y=\frac{a}{b}(x-b)
$$

$a x-b y-a b=0$
(ii) $y-\frac{a}{t_{1}}=\left(\frac{\frac{a}{t_{2}}-\frac{a}{t_{1}}}{a t_{2}-a t_{1}}\right)\left(x-a t_{1}\right)=\frac{-1}{t_{1} t_{2}}\left(x-a t_{1}\right)$
$t_{1} t_{2} y-a t_{2}=-x+a t_{1}$
$x+t_{1} t_{2} y=a\left(t_{1}+t_{2}\right)$

Class Exercise - 3
Find the equation of the line cutting off an intercept of -3 from axis of Y and inclined at an angle θ to positive X-axis, where $\tan \theta=3 / 5$.

Solution:

Using slope intercept form
$y=\tan \theta x-3$

$$
=3 / 5 x-3
$$

or $3 x-5 y-15=0$

Class Exercise - 4
(i) Find the equation of the line which passes through $(1,2)$ and the sum of the intercepts on axis is 6 .
(ii) Find the equation of the line through $(3,2)$ so that the segment of the line intercepted between the axis is bisected at this point.
(iii)The length of the perpendicular from the origin to a line is 5 and the line makes an angle of 120° with the positive direction of Y-axis. Find the equation of the line.

Solution 4(i)

Let the equation of line in intercept form be
$\frac{x}{a}+\frac{y}{b}=1$, if it passes through $(1,2)$, then
$\frac{1}{a}+\frac{2}{b}=1, \quad$ also $a+b=6$
$\Rightarrow \frac{1}{\mathrm{a}}+\frac{2}{6-\mathrm{a}}=1 \Rightarrow 6-\mathrm{a}+2 \mathrm{a}=\mathrm{a}(6-\mathrm{a})$
$\Rightarrow 6+a=6 a-a^{2} \Rightarrow a^{2}-5 a+6=0 \Rightarrow(a-3)(a-2)=0$
$\Rightarrow \mathrm{a}=3$ or 2 Corresponding $\mathrm{b}=3$ or 4 Hence, equations become
$\frac{x}{3}+\frac{y}{3}=1$ or $\frac{x}{2}+\frac{y}{4}=1$

Solution 4(ii)

Let x-intercept and y-intercept of the line be a and b respectively i.e. line passes through ($a, 0$) and ($0, b$)

As segment joining $(\mathrm{a}, 0)$ and $(0, b)$ is bisected by $(3,2)$
$\therefore \frac{a+0}{2}=3$ and $\frac{0+b}{2}=2$
$a=6$ and $b=4$ Equation of line becomes

$$
\frac{x}{6}+\frac{y}{4}=1 \text { or } 2 x+3 y=12
$$

Solution 4 (iii)

the equation of line becomes
$x \cos 60^{\circ}+y \sin 60^{\circ}=5$ or

$$
\text { or } x+\sqrt{3} y=10
$$

$$
\frac{x}{2}+y \frac{\sqrt{3}}{2}=5
$$

Class Exercise - 5
A straight line is drawn through the point $P(3,2)$ and is inclined at an angle of 60° with the positive X axis. Find the coordinates of points on it at a distance of 2 from P.

Solution

Using parameter form of line, i.e.
$\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r$
$\frac{x-3}{\cos 60^{\circ}}=\frac{y-2}{\sin 60^{\circ}}= \pm 2 \quad \frac{x-3}{\left(\frac{1}{2}\right)}=\frac{y-2}{\left(\frac{\sqrt{3}}{2}\right)}=2$
$\frac{x-3}{\left(\frac{1}{2}\right)}=\frac{y-2}{\left(\frac{\sqrt{3}}{2}\right)}=-2 \quad x=4, y=2+\sqrt{3}$ or $x=2, y=2-\sqrt{3}$
Hence required points are

$$
(4,2+\sqrt{3}) \text { and }(2,2-\sqrt{3})
$$

Class Exercise-- 6

One diagonal of a square is the portion of the line $7 x+5 y=35$ intercepted by the axis. Obtain the extremities of the other diagonal.

Solution:

$$
7 x+5 y=35 \text { or } \frac{x}{5}+\frac{y}{7}=1
$$

Solution

Equation of $B D=\frac{x-\frac{5}{2}}{\cos \theta}=\frac{y-\frac{7}{2}}{\sin \theta}=r$
where $\tan \theta=\frac{-1}{\text { Slope of } A C}=\frac{-1}{\frac{7-0}{(0-5)}}=\frac{5}{7}$
$\frac{x-\frac{5}{2}}{\cos \theta}=\frac{y-\frac{7}{2}}{\sin \theta}=r$
$\tan \theta=\frac{-1}{\text { Slope of } A C}=\frac{-1}{\frac{7-0}{(0-5)}}=\frac{5}{7}$

Solution

$\cos \theta=\frac{7}{\sqrt{74}} \sin \theta=\frac{5}{\sqrt{74}}$
Equation of diagonal BD:

$$
\frac{x-\frac{5}{2}}{\frac{7}{\sqrt{74}}}=\frac{y-\frac{7}{2}}{\frac{5}{\sqrt{74}}}= \pm \frac{\sqrt{74}}{2} \quad x=\frac{5}{2}+\frac{7}{2}, y=\frac{7}{2}+\frac{5}{2}
$$

or $\mathrm{x}=\frac{5}{2}-\frac{7}{2}, \mathrm{y}=\frac{7}{2}-\frac{5}{2} \quad \mathrm{~B}\left(\frac{5}{2}+\frac{7}{2}, \frac{7}{2}+\frac{5}{2}\right), \mathrm{D}\left(\frac{5}{2}-\frac{7}{2}, \frac{7}{2}-\frac{5}{2}\right)$

$$
B(6,6), \quad D(-1,1)
$$

Class Exercise - 7
If $P(1,2), Q(4,6), R(a, b)$ and
$S(2,3)$ are the vertices of a parallelogram PQRS in order, then
(a) $a=5, b=7$
(b) $a=7, b=5$
(c) $a=-5, b=7$
(d) $a=-7, b=5$

Solution:

Slope of $\mathrm{PQ}=$ Slope of RS

Solution

$$
\begin{equation*}
\Rightarrow \frac{6-2}{4-1}=\frac{b-3}{a-2} \Rightarrow 4 a-8=3 b-9 \tag{i}
\end{equation*}
$$

$\Rightarrow 4 \mathrm{a}-3 \mathrm{~b}+1=0$
$P S \| Q R \quad$ Slope of $P S=$ Slope of $Q R$
$\Rightarrow \frac{3-2}{2-1}=\frac{b-6}{a-4} \Rightarrow a-b+2=0 \ldots$
Solving (i) and (ii), we get
$a=5, b=7$

Class Exercise-- 8

Find the equations of the lines which passes through the origin and trisect the portion of the straight line $3 x+y=12$ which is intercepted between the axes of coordinates,

Solution :

Let P be the point dividing $A B$ in $2: 1$,

$$
P \equiv\left(\frac{4+2.0}{3}, \frac{1.0+2.12}{3}\right) \equiv\left(\frac{4}{3}, 8\right)
$$

Solution

And Q be the point dividing $A B$ in the ratio $1: 2$, then
$Q \equiv\left(\frac{1.0+2.4}{3}, \frac{1.12+2.0}{3}\right)=\left(\frac{8}{3}, 4\right)$

Equation of $O P \equiv y=\frac{8}{4} \quad x \Rightarrow y=6 x$ $\overline{3}$

Equation of $O Q=y=\frac{4}{8} x \Rightarrow y=\frac{3}{2} x$

$$
3
$$

Class Exercise - 9

Prove that the points $(2,-1),(0,2)$, $(2,3)$ and $(4,0)$ are the vertices of a parallelogram.

Solution :

Slope of $\mathrm{PQ}=\frac{2-(-1)}{0-2}=\frac{3}{-2}=\frac{-3}{2}$

Solution

Slope of RS $=\frac{0-3}{4-2}=\frac{-3}{2}$
Slope of PS $=\frac{0-(-1)}{4-2}=\frac{1}{2}$
Slope of $Q R=\frac{3-2}{2-0}=\frac{1}{2}$

As slope of $P Q=$ Slope of RS and Slope of PS = Slope of QR

PQRS is a parallelogram

Class Exercise-- 10
(i) Find the equation of line passing through the point $(-4,-3)$ and perpendicular to the straight line joining $(1,3)$ and $(2,7)$.
(ii) Find the equation to the straight line drawn at right angle to the straight line $x / a-y / b=1$ through the point where it meets the axis of x.

Solution - 10(i)

Slope of the required line is

$$
\frac{-1}{\left(\frac{7-3}{2-1}\right)}=\frac{-1}{4}
$$

Equation of required line by point slope form is given by

$$
\begin{aligned}
& (y-(-3))=\frac{-1}{4}(x-(-4)) \\
& y+3=\frac{-1}{4}(x+4) \quad 4 y+12=-x-4 \\
& x+4 y+16=0
\end{aligned}
$$

Solution - 10(ii)

$\frac{x}{a}-\frac{y}{b}=1$
meets X-axis at ($a, 0$) any line perpendicular to
$\frac{x}{a}-\frac{y}{b}=1$ is given by $\frac{x}{b}+\frac{y}{a}=c$
it passes through $(a, 0)$ then $\frac{a}{b}+0=c$
$\Rightarrow \frac{x}{b}+\frac{y}{a}=\frac{a}{b}$
$\Rightarrow a x+b y=a^{2}$

Class Exercise - 11

Show that the equations to the straight lines passing through the points $(3,-2)$ and inclined at 60° to the line $\sqrt{3} x+y=1$ are $y+2=0$ and $y-\sqrt{3} x+2+3 \sqrt{3}=0$

Solution

Let the slope of the required line is m, then
$\left\lvert\, \frac{m-(-\sqrt{3})}{1+m(-\sqrt{3})}=\tan 60^{\circ}=\sqrt{3}\right.$
$\left|\frac{m+\sqrt{3}}{1-\sqrt{3} m}\right|=\sqrt{3} \Rightarrow \frac{m+\sqrt{3}}{1-\sqrt{3} m}= \pm \sqrt{3}$

$$
m+\sqrt{3}=\sqrt{3}-3 m \text { or } m+\sqrt{3}=-\sqrt{3}+3 m
$$

$\Rightarrow \mathrm{m}=0$ or $\sqrt{3}$ Equation of lines are given by
$\frac{y+2}{x-3}=0$ or $\frac{y+2}{x-3}=\sqrt{3} \Rightarrow y+2=0$ or $y-\sqrt{3} x+2+3 \sqrt{3}=0$

Class Exercise - 12

Line L has intercepts a and b on the coordinate axes. When the axes are rotated through a given angle; keeping the origin fixed, the same line has intercepts p and q, then
(a) $a^{2}+b^{2}=p^{2}+q^{2}$
(b) $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}$
(c) $a^{2}+p^{2}=b^{2}+q^{2}$
(d) $\frac{1}{a^{2}}+\frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{q^{2}}$

Solution - Method I
Equation of line in old reference is
$\frac{x}{a}+\frac{y}{b}=1$
if the axis of coordinates is rotated at an angle α
$X=X \cos \alpha-Y \sin \alpha \quad y=X \sin \alpha+Y \cos \alpha$
$\frac{X \cos \alpha-Y \sin \alpha}{a}+\frac{X \sin \alpha+Y \cos \alpha}{b}=1$
$X\left(\frac{\cos \alpha}{a}+\frac{\sin \alpha}{b}\right)+Y\left(\frac{\cos \alpha}{b}-\frac{\sin \alpha}{a}\right)=1 \quad \ldots$ (i)
In new frame equation is $\frac{X}{p}+\frac{Y}{q}=1$

Solution Cont.
$X\left(\frac{\cos \alpha}{a}+\frac{\sin \alpha}{b}\right)+Y\left(\frac{\cos \alpha}{b}-\frac{\sin \alpha}{a}\right)=1 \ldots$ (i)
$\frac{X}{p}+\frac{Y}{q}=1 \ldots$ (ii)
As (i) and (ii) represent same line
$\frac{\cos \alpha}{a}+\frac{\sin \alpha}{b}=\frac{1}{p}$ and $\frac{\cos \alpha}{b}-\frac{\sin \alpha}{a}=\frac{1}{q}$
Squaring and adding, we get

$$
\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}
$$

Solution Method II

$$
\begin{align*}
& \frac{x}{a}+\frac{y}{b}=1 \ldots \text { (i) } \\
& \frac{x}{p}+\frac{y}{q}=1 \ldots \text { (ii } \tag{ii}
\end{align*}
$$

Now both equation represents the
same line with different axes
Hence distance of origin from both lines is same

$$
\frac{1}{\frac{1}{a^{2}}+\frac{1}{b^{2}}} \frac{1}{\frac{1}{p^{2}}+\frac{1}{q^{2}}} \text { or } \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}
$$

Class Exercise-- 13

Equations

$(b-c) x+(c-a) y+(a-b)=0$
and $\left(b^{3}-c^{3}\right) x+\left(c^{3}-a^{3}\right) y+a^{3}-b^{3}=0$
will represent the same line if
(a) $b=c$
(b) $c=a$
(c) $a+b+c=0$
(d) All of these

Solution

$$
\begin{aligned}
& \frac{b-c}{b^{3}-c^{3}}=\frac{c-a}{c^{3}-a^{3}}=\frac{a-b}{a^{3}-b^{3}}=\frac{1}{k}(\text { say }) \\
& b^{3}-c^{3}=k(b-c) \\
& \Rightarrow(b-c)\left(b^{2}+c^{2}+b c\right)=k(b-c)
\end{aligned}
$$

Similarly, $c=a$ or $c^{2}+a^{2}+c a=k$
and $a=b$ or $a^{2}+b^{2}+a b=k$ $b^{2}+c^{2}+b c=c^{2}+a^{2}+k \quad b^{2}-a^{2}=c(a-b)$
$(b-a)(b+a+c)=0 \Rightarrow b=a$ or $a+b+c=0$
Hence either $a=b$ or $b=c$ or $c=a$ or $a+b+c=0$

Class Exercise-- 14

A rectangle $P Q R S$ has its side $P Q$ parallel to the line $y=m x$ and vertices P, Q and S on the lines y $=a, x=b$ and $x=-b$, respectivel y. Find the locus of the vertex R.

Solution

As PQRS is a rectangle Diagonals bisect each other i.e.
$\Rightarrow p=-h, q+s=k+a \quad\left(\frac{h+p}{2}, \frac{k+a}{2}\right) \equiv\left(0, \frac{s+q}{2}\right)$
Slope of $\mathrm{PQ}=\frac{\mathrm{a}-\mathrm{q}}{\mathrm{p}-\mathrm{b}}=\mathrm{m}$

Solution

$p=-h, q+s=k+a$
Slope of $P Q=\frac{a-q}{p-b}=m$
$\Rightarrow q=a+m(h+b)$ as $p=-h$
Slope of $P S=\frac{a-s}{p+b}=-\frac{1}{m}$
$\Rightarrow s=a+\frac{1}{m}(b-h)$
As $q+s=k+a$ we get
$a+m(h+b)+a+\frac{1}{m}(b-h)=k+a$
$\left(m^{2}-1\right) h-m k+\left(m^{2}+1\right) b+m a=0$
Hence locus is $\left(m^{2}-1\right) x-m y+a m+\left(m^{2}+1\right) b=0$

Class Exercise 15

Find equations of the sides of the triangle having $(3,-1)$ as a vertex, $x-4 y+10=0$ and $6 x+10 y-59=0$ being the equations of an angle bisector and a median respectively drawn from different vertices.

Solution

$\left(x_{1}, y_{1}\right)$ lies on $x-4 y+10=0$
$x_{1}-4 y_{1}+10=0$
Also $\left(\frac{x_{1}+3}{2}, \frac{y_{1}-1}{2}\right)$ lies on $6 x+10 y-59=0$
$\therefore 3\left(x_{1}+3\right)+5\left(y_{1}-1\right)-59=0$

Solution

$$
\begin{aligned}
& x_{1}-4 y_{1}+10=0 \\
& 3 x_{1}+5 y_{1}-55=0 \ldots(i)
\end{aligned}
$$

Solving (i) and (ii), we get
$17 y_{1}-85=0 \Rightarrow y_{1}=5, x_{1}=10$
Now $\left(x_{2}, y_{2}\right)$ lies on $6 x+10 y-59=0$ $6 x_{2}+10 y_{2}-59=0 \ldots$ (iii) $\tan \angle \mathrm{CBE}=\tan \angle \mathrm{EBA}$
$\Rightarrow \frac{\frac{y_{2}-5}{x_{2}-10}-\frac{1}{4}}{1+\frac{1}{4}\left(\frac{y_{2}-5}{x_{2}-10}\right)}=\frac{\frac{1}{4}-\frac{6}{7}}{1+\frac{1}{4} \cdot \frac{6}{7}}$

Solution

$$
\begin{aligned}
& \Rightarrow \frac{4 y_{2}-20-x_{2}+10}{4 x_{2}-40+y_{2}-5}=\frac{7-24}{28+6}=\frac{-17}{34}=\frac{-1}{2} \\
& \Rightarrow 8 y_{2}-2 x_{2}-20=-4 x_{2}-y_{2}+45
\end{aligned}
$$

$$
6 x_{2}+10 y_{2}-59=0 \quad \ldots \text { (iii) }
$$

$$
2 x_{2}+9 y_{2}=65 \quad \text { (iv) }
$$

Solving (iii) and (iv), we get $x_{2}=\frac{-7}{2}, y_{2}=8$
Hence using two point form equations of $A B, B C$ and $C A$ respectively are

$$
6 x-7 y=25,2 x+9 y=65,18 x+13 y=41
$$

Thank you

\qquad

