

Download more resources like this on ECOLEBOOKS.COM

Example:

The map distiance from Ben Nevis to Ben Doran is 2 cm . The rea--life distance is 50 km . What is the scale of the map.

Example:

The actual length of a Olympic size swimming pool is 50 m . On the architect's plan it is 10 cm . What is the scale of the plan.
$10 \Rightarrow 50 \mathrm{~m}$
$1 \Rightarrow \Rightarrow$
 factor.

,

Success Criteria
 Success
 the
 :

1. Understand how the scale factor applies to similar triangles.
2. Solve problems using scale
\square
\qquad

Conditions for similarity

Two shapes are similar only when:
-Corresponding sides are in proportion and

- Corresponding angles are equal

All rectangles are not similar to one another since only condition 2 is true.

If two objects are similar then one is an enlargement of the other

The rectangles below are similar:
Find the scale factor of enlargement that maps A to B

If two objects are similar then one is an enlargement of the other

The rectangles below are similar:
Find the scale factor of enlargement that maps A to B

If we are told that two objects are similar and we can find the scale factor of enlargement then we can calculate the value of an unknown side.

Comparing corresponding sides in A and $B: 24 / 8=3$ so $x=3 \times 3=9 \mathrm{~cm}$ Comparing corresponding sides in A and $C: 13 \frac{1}{2} / 3=4 \frac{1}{2}$ so $y=4 \frac{1}{2} \times 8=36 \mathrm{~cm}$

If we are told that two objects are similar and we can find the scale factor of enlargement then we can calculate the value of an unknown side.

Comparing corresponding sides in A and $B: 7.14 / 2.1=3.4$ so $x=3.4 \times 5.6=19.04 \mathrm{~cm}$
Comparing corresponding sides in A and $C: 26.88 / 5.6=4.8$ so $y=4.8 \times 2.1=10.08 \mathrm{~cm}$

Similar Triangles

Similar triangles are important in mathematics and their application can be used to solve a wide variety of problems.

The two conditions for similarity between shapes as we have seen earlier are:

- Corresponding sides are in proportion and
- Corresponding angles are equal

Triangles are the exception to this rule. only the second condition is needed

Two triangles are similar if their

- Corresponding angles are equal

me

ownload more resources like this on ECOLEBOOKS．COM

8
10

170

$$
5
$$

 \qquad

7
度
爰
H
 ＋ 2_{2}^{2} R0

These two triangles are similar since they are equiangular.

These two triangles are similar since they are equiangular.

If 2 triangles have 2 angles the same then they must be equiangular

Download more resources like this on ECOLEBOOKS．COM
56 m
By finding the RSF Find the value of b

$$
\frac{1}{15}=\frac{5}{15}
$$

Find a given ESF F： 3

 5π號

4

```
            M%4
```

```
            M%4
```

$+1$

town
town

```
                    O
```

```
                    O
```


Finding Unknown sides (1)

18 cm

12 cm

Since the triangles are equiangular they are similar.
So comparing corresponding sides.

$$
\begin{array}{ll}
\frac{b}{6}=\frac{18}{12} & \frac{c}{20}=\frac{12}{18} \\
b=\frac{6 \times 18}{12}=9 \mathrm{~cm} & c=\frac{20 \times 12}{18}=13.3 \mathrm{~cm}
\end{array}
$$

Q1. Find the root's to 1 decimal place

$$
1-7 x-x^{2}=0
$$

Q2. A freezer is reduced by 20% to $£ 200$ in a sale. What was the on om hal price.

Q3. Calculate $3 \frac{3}{4} \times 1 \frac{1}{3}$
\qquad lan

[^0]

1

$$
\frac{3}{3}
$$

The

Success Criteria

1. Understand how the scale factor applies to similar triangles with algebraic terms.
2. Solve problems using scale factor that contain algebraic terms.
Ho explanh how hesced
 terms:

Determining similarity

The order of the lettering is important in order to show which pairs of sides correspond.

If $B C$ is parallel to $D E$, explain why
 triangles $A B C$ and $A D E$ are similar

Angle $B A C$ = angle $D A E$ (common to both triangles)
Angle $A B C$ = angle $A D E$ (corresponding angles between parallels)
Angle $A C B$ = angle $A E D$ (corresponding angles between parallels)
A line drawn parallel to any side of a triangle produces 2 similar triangles.

Triangles EBC and EAD are similar

Triangles DBC and DAE are similar

The two triangles below are similar:
Find the distance y.

$$
\begin{aligned}
R S F & =\frac{A E}{A D}=\frac{5}{50}=\frac{y}{20} \\
y & =\frac{5 \times 20}{50}=2 \mathrm{~cm}
\end{aligned}
$$

The two triangles below are similar:
Find the distance y.

$$
\begin{aligned}
E S F & =\frac{A D}{A E}=\frac{50}{5}=\frac{20}{y} \\
y & =\frac{5 \times 20}{50}=2 \mathrm{~cm}
\end{aligned}
$$

In the diagram below $B E$ is parallel to $C D$ and all measurements are as shown.
(a) Calculate the length $C D$
(b) Calculate the perimeter of the Trapezium EBCD

(a) $\mathrm{SF}=\frac{10}{6}=\frac{C D}{4.8}$
(b) $\mathrm{SF}=\frac{10}{6}=\frac{A C}{4.5}$
$C D=\frac{4.8 \times 10}{6}=8 \mathrm{~cm}$
$A C=\frac{4.5 \times 10}{6}=7.5 \mathrm{~cm}$

So perimeter
$=3+8+4+4.8$
$=19.8 \mathrm{~cm}$

Hio explam how the sco
 algebraic terms.

Success Criteria
 \qquad
 Succen Minn

1. Understand how the scale factor applies to similar triangles with harder algebraic terms.
2. Solve problems using scale

- factor that contain harder algebraic terms. .
\square
$\mathrm{c}=\mathrm{y}=$

15

\qquad
\square
 $1+41$
$\frac{12}{2}+1$

\qquad

In a pair of similar triangles the ratio of the corresponding sides is constant, always producing the same enlargement or reduction.

Find the values of x given that the triangles are similar.

In a pair of similar triangles the ratio of the corresponding sides is constant, always producing the same enlargement or reduction.

Find the values of x given that the triangles are similar.

Corresponding sides are in proportion

$$
\begin{aligned}
\frac{P Q}{S T} & =\frac{P R}{P T} \\
\frac{3}{5} & =\frac{18-x}{x} \\
3 x & =5(18-x) \\
3 x & =90-5 x \\
8 x & =90 \\
x & =11.25
\end{aligned}
$$

\square
\square It

Success Criteria
 Success
 the

1. Understand how the scale factor applies to other similar figures.
2. Solve problems using scale factor:
 +
.
 W
\qquad
1
\square
\qquad $\frac{5}{15}$
.

Scale Factor applies to ANY SHAPES that are mathematically similar.

Given the shapes are similar, find the values y and z ?
Scale factor $=E S F=\frac{15}{3}=5$
Scale factor $=$ RSF $=\frac{1}{5}=0.2$
y is $2 \times 5=10$
z is $6 \times 0.2=1.2$

Scale Factor applies to ANY SHAPES that are mathematically similar.

Given the shapes are similar, find the values a and b ?
Scale factor $=$ RSF $\left.=\frac{4}{10}=0.4 \right\rvert\,$ Scale factor $=E S F=\frac{10}{4}=2.5$ a is $8 \times 0.4=3.2$ b is $2 \times 2.5=5$

Success Criteria

1. Understand how the scale factor applies to area.
2. Solve area problems using scale factor.

Ho explain how the scate

$(S F)^{2}$

SEI=2

Another example of similar area?

Work out the area of each shape and try to link AREA and SCALE FACTOR

Small Area $=4 \times 2=8 \mathrm{~cm}^{2}$
Large Area $=12 \times 6=72 \mathrm{~cm}^{2}$
Scale factor $=$ ESF $=\frac{12}{4}=3$
Large Area $=(3)^{2} \times 8=9 \times 8=72 \mathrm{~cm}^{2}$

Example The following two shapes are said to be similar. If the smaller shape has an area of $42 \mathrm{~cm}^{2}$. Calculate the area of the larger shape.

Working

$E S F=\frac{4}{3}$
So area S.F $=\left(\frac{4}{3}\right)^{2}$
Area of $2^{\text {nd }}$ shape $=\left(\frac{4}{3}\right)^{2} \times 42=\frac{16}{9} \times 42=74.67 \mathrm{~cm}^{2}$

Questions

1.

2 cm

Shapes A and B are SIMILAR. If shape A has an area of $5.2 \mathrm{~cm}^{2}$, calculate the area of shape B. (Its NOT $10.4 \mathrm{~cm}^{2}$) !!
2.

The 2 photographs of an ink blot are similar. The area of the small one is $7 \mathrm{~cm}^{2}$. Calculate the area of the larger one.

3.

Shape Q is an enlargement of shape P If the area of shape Q is $45 \mathrm{~mm}^{2}$, calculate the area of shape P.

Q

The small box of Le Chic chocolates is similar in shape to the large box but its edges are half as long.

LARGE BOX

SMALL BOX

The area of the face shown of the large box is $320 \mathrm{~cm}^{2}$.
What is the area of the corresponding face of the small box?

Success Criteria

1. Understand how the scale factor applies to surface area 2. Solve surface area problems
Using scale factor. Solve sunface area problems
using scale factor.
\qquad +14.

$$
\frac{20}{\frac{21}{21}}
$$

The same rule applies when dealing with Surface Area

$$
\begin{aligned}
& 2(2 \times 3)+2(4 \times 3)+2(2 \times 4)=52 \mathrm{~cm}^{2} \\
& \text { ESF }=\frac{12}{4}=3 \\
& (3)^{2} \times 52=468 \mathrm{~cm}^{2}
\end{aligned}
$$

T-

䊀

Success Criteria

1. Understand how the scale
factor applies to 3D-volume.
2. Understand how the scale
factor applies to $3 D$-volume.
3. Solve volume problems using scale factor.

Tir

Scale factor : ESF $=\frac{4}{2}=2$

Another example of similar volumes?

Work out the volume of each shape and try to link volume and scale factor

$V=3 \times 2 \times 2=12 \mathrm{~cm}^{3}$

$$
V=6 \times 4 \times 4=96 \mathrm{~cm}^{3}
$$

Scale factor $=$ ESF $=\frac{6}{3}=2$
Large Volume $=(2)^{3} \times 12=8 \times 12=96 \mathrm{~cm}^{3}$

Given that the two boxes are similar, calculate the volume of the large box if the small box has a volume of 15 ml

2 cm

$$
E S F=\frac{6}{2}=3
$$

So volume of large box $=3^{3} \times 15==405 \mathrm{ml}$

Example

The diagram below shows two jugs which are mathematically similar.

The volume of the smaller jug is 0.8 litre.
Find the volume of the larger jug.

$$
E S F=\frac{30}{20}=\frac{3}{2}
$$

So volume of large jug $=\left(\frac{3}{2}\right)^{3} \times 0.8=\frac{27}{8} \times 0.8=2.7$ litres

Shown are three SIMILAR Popcorn Packets

(a) Write down and simplify the ratio of the sides of the Super Duper : Big, and the Super Duper : Medium.
(b) The Super Duper box needs $1600 \mathrm{~cm}^{2}$ of cardboard to make it. How much will the Big Box need?

(c) The Big one holds $2700 \mathrm{~cm}^{3}$ of Popcorn. How much will the Medium one hold ?
(a) $S D: B=4: 3 \quad S D: M=8: 5$
(b) RSF $=\frac{3}{4} \quad$ Area $_{B}=\left(\frac{3}{4}\right)^{2} \times 1600=900 \mathrm{~cm}^{2}$
(c) RSF $=\frac{B}{M}=\frac{5}{6} \quad$ Volume $_{B}=\left(\frac{5}{6}\right)^{3} \times 2700=1562.5 \mathrm{~cm}^{3}$

Walls make two sizes of "Comentos" which are similar.
The small one cosis 40p. What should the big one cost?

$$
E S F=\frac{12}{8}=\frac{3}{2}
$$

So volume of large jug $=\left(\frac{3}{2}\right)^{3} \times 40=\frac{27}{8} \times 40=£ 1.35$

The ratio of the volumes of 2 spheres is $1: 10$ What is the raito of ther surface areas (answer to 1 decimal place in the form 1:?)

$$
\begin{gathered}
(S F)^{3}=\frac{10}{1}=10 \\
S F=2.1544
\end{gathered}
$$

So surface area ratio $=(S F)^{2}=2.1544^{2}=4.64$

Ratio of their surface area is $1: 4.6$ (to 1 d.p.)

[^0]: Qi.

