

$\frac{2}{2}+\frac{2}{2}$

\qquad

Learning Intention
 Savarina

Thio inderstande
squaring a number:
\square

Success Criteria
 Succes

$$
\begin{aligned}
& \text { 1. To understand what is } \\
& \text { meant by the term } \\
& \text { 2. Be able to calculate squares } \\
& \text { both mentally and using the } \\
& \text { becarcuiatory }
\end{aligned}
$$

\qquad
\qquad

 ```fir

``` \\ \section*{To square a number means to: \\ \section*{To square a number means to: \\ \\ Multiply it by itself it \\ \\ Multiply it by itself it \\ \(\%\)




\section*{ans to
ane}
\(\frac{5!}{t=1!}\)
\(\square\)
\(\square\)
\(\square\)

\section*{square a nu
Multiply}

\section*{square a nu
Multiply}

\section*{square a nu
Multiply}
berm mean
\(\frac{15}{2+1}=\) whustio

\section*{Soutane Rollo
you now know how to find:} We can undo this by asking
which number times itselogives 81
\[
\begin{aligned}
& \text { Wis s expressed as. the SQUARE ROOT of } 81 \text { is } 9 \text { " } \\
& \text { orin symbols we white } \sqrt{81}=9
\end{aligned}
\] We can undo this by asking
which number times itselogives 81

\section*{From the top line, the answer is?}
\(\qquad\)

\[
101
\]

17


\(\square\)


\section*{Right - Angle Triangles}


\section*{Aim of today's Lesson}
'To investigate the right-angle triangle and to come up with a relationship between the lengths of its two shorter sides and the longest side which is called the hypotenuse.


\section*{Right - Angle Triangles}


What is the length of \(a\) ? 3 What is the length of \(b\) ? 4

Copy the triangle into your jotter and measure the length of \(c\)

5

\section*{Right-Angle Triangles}


What is the length of \(a\) ? 6 What is the length of \(b\) ? 8

Copy the triangle into your jotter and measure the length of \(c\)

10


What is the length of \(a\) ? 5 What is the length of \(b ? 12\)

Copy the triangle into your jotter and measure the length of \(c\)

13

\section*{Right - Angle Triangles}

Copy the table below and fill in the values that are missing
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(a\) & \(b\) & \(c\) & \(a^{2}\) & \(b^{2}\) & \(c^{2}\) \\
\hline 3 & 4 & 5 & & & \\
\hline 5 & 12 & 13 & & & \\
\hline 6 & 8 & 10 & & & \\
\hline
\end{tabular}


\section*{Right-Angle Triangles}


\section*{Pythagoras's Theorem}


\section*{Summary of Pythagoras's Theorem}
\[
a^{2}+b^{2}=c^{2}
\]


Note: The equation is ONLY valid for right-angled triangles.

\section*{Learning ititention}

\section*{Success Criteria}
1. know the term hypotenuse

"the longest side"
Bse pythagoras heorem: - Mamentic
the hypotenuse
> 2. Use Pythagoras Theorem to calculate the hypotenuse.

\section*{Calculating the Hypotenuse}

\section*{Example 1}

Q2. Calculate the longest length of the rightangled triangle below.
\[
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c^{2}=12^{2}+8^{2} \\
& c^{2}=208 \\
& c=\sqrt{208}=14.42 \mathrm{~km}
\end{aligned}
\]


\section*{Calculating the Hypotenuse}

\section*{Example 2}

Q1. An aeroplane is preparing to land at Glasgow Airport. It is over Lennoxtown at present which is 15 km from the airport. It is at a height of 8 km .

How far away is the plane from the airport?
\(c^{2}=a^{2}+b^{2}\)
\(c^{2}=15^{2}+8^{2}\)
\(c^{2}=289\)
\(c=\sqrt{289}=17 \mathrm{~km}\)
Airport \(a=15\) Lennoxtown


\section*{Learning intention}

\section*{}

\section*{1. Solve real-life problems using Pythagoras Theorem.}


\section*{han show how pytaceg is} realifie pop lems.

\section*{2}

\(\square\) I

\section*{Success Criteria}


\section*{When coming across a problem involving finding a} lissing side in a right angled triangle, you should consider using pythagoras theorem to calculate is length
\[
\begin{aligned}
& \mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2} \\
& \hline \mathrm{c}^{2}=8^{2}+15^{2} \\
& \mathrm{c}^{2}=289 \\
& \mathrm{c}=\sqrt{289}=17 \mathrm{~m} \\
& \hline
\end{aligned}
\]

 \\ \\ \\ \\  \\ \\ \\ \section*{\\ \\ \section*{\\ \section*{Learningoratention \\ \\ \\ \\ \\ \\ \\ Success Criteria \\ \\ \\ \\ \\ \\ \\ Success Criteria \\ \\ \\ \\ \\ \\ \\ Success Criteria \\ \\ \\ \\ \\ \\ \\ Success Criteria \\ \\ \\ \\ \\ \\ \\ 1. Use Pythagoras Theorem \\ \\ \\ \\ \\ \\ \\ 1. Use Pythagoras Theorem \\ \\ \\ \\ \\ \\ \\ 1. Use Pythagoras Theorem \\ \\ \\ \\ \\ \\ \\ 1. Use Pythagoras Theorem to find the length of smaller side smaller side smaller side smaller side \\ \\ \\ \\  \\ \\ \\ \\  \\ \\ \\ \\  \\ \\ \\ \\  \\ \\ \\ \\  \\ \\ \\ \\  \\ \\ \\ \\  \\ \\ \\ \\  \\ \\ \\ \\ than shom how pytacegras the leng + aso the smallensside \\ \\ \\ \\ -5: \\ \\ \\ \\ -5: \\ \\ \\ \\ -5: \\ \\ \\ \\ -5: 1
8
8
8 1
8
8
8 1
8
8
8 1
8
8
8
}
}
}
}


Check answer! Always smaller than hypotenuse
\begin{tabular}{|l|}
\hline\(c^{2}=a^{2}+b^{2}\) \\
\hline\(a^{2}=c^{2}-b^{2}\) \\
\hline\(a^{2}=20^{2}-12^{2}\) \\
\hline\(a^{2}=256\) \\
\(a=\sqrt{256}=16 \mathrm{~cm}\) \\
\hline
\end{tabular}

a cm
\[
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& b^{2}=c^{2}-a^{2}
\end{aligned}
\]
\[
b^{2}=10^{2}-8^{2}
\]
\[
b^{2}=36
\]


8 cm
smaller than hypotenuse
\(b=\sqrt{36}=6 \mathrm{~cm}\)

In a restaurant, tables and chairs are set out as shown belon.


1 table


2 tables


3 tables
(a) Complete this table.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline Number of tables & 1 & 2 & 3 & 4 & 5 & 6 & & 13 \\
\hline Number of chairs & 4 & 6 & & & & & & \\
\hline
\end{tabular}
(b) Write down a rule for finding the number of chairs if you know the number of tables.
-at Leanningantention
harshen howertaragoras Theorem geviole used e the lenetaontalne?

\section*{Success Criteria}
1. Apply Pythagoras Theorem to find length of a line.
2. Show all working.
\[
4 \pm
\]
\(\square\)
 inc
\(\square\)
\(\square\) 0
\(\frac{1}{4}\) 8 .

Discuss with your partner


\section*{Pythagoras Theorem to find the length of a Line}


\section*{m}
\[
8
\]
B

Download more resources like this on ECOLEBOOKS . Com
b.
\[
c^{2}=a^{2}+b^{2}
\]

Finding

\section*{\[
b^{2}=c^{2}-a^{2}
\] \\ \(b^{2}=c^{2}-a^{2}\)}



\section*{4-}

```

