

To understand the term 'squaring a number'.

Learning Internion

Squaring a Number

Success Criteria

1. To understand what is meant by the term

 Be able to calculate squares both mentally and using the calculator.

squaring a number

To square a number means to :

Schanne a Number

 9^2 means $9 \times 9 = 81$

 10^2 means 10 x 10 = 100.

You now know how to find : 92 = 9 × 9 = 81

Square Root of a number

We can 'undo' this by asking

which number, times itself, gives 81

From the top line, the answer is 9

This is expressed as : "the SQUARE ROOT of 81 is 9"

Right - Angle Triangles

Aim of today's Lesson

'To investigate the right-angle triangle and to come up with a relationship between the lengths of its two shorter sides and the longest side which is called the hypotenuse.'

Right - Angle Triangles

What is the length of **a** ? 3 What is the length of **b** ? 4

Copy the triangle into your jotter and measure the length of C

5

Right - Angle Triangles

What is the length of **a** ?6 What is the length of **b** ?8

Copy the triangle into your jotter and measure the length of C

10

Right - Angle Triangles

What is the length of **a** ? 5 What is the length of **b** ?12

Copy the triangle into your jotter and measure the length of C 13

Right - Angle Triangles

Copy the table below and fill in the values that are missing

۵	b	С	۵²	b²	C ²	
3	4	5				c b
5	12	13				a
6	8	10				

Right - Angle Triangles

Pythagoras's Theorem

0

 $a^2 + b^2$

Summary of Pythagoras's Theorem

Note: The equation is <u>ONLY</u> valid for right-angled triangles.

 $a^2 + b^2 = c^2$

0

 \bigcirc

Learning Internion

"the longest side"

Use Pythagoras Theorem

to calculate the length of

Colculating Hypotreause

Success Criteria

1. Know the term hypotenuse

2. Use Pythagoras Theorem to calculate the hypotenuse.

Calculating the Hypotenuse

Example 1

Q2. Calculate the longest length of the rightangled triangle below.

 $c^{2} = a^{2} + b^{2}$ $c^{2} = 12^{2} + 8^{2}$ $c^{2} = 208$ $c = \sqrt{208} = 14.42 \text{ km}$

Calculating the Hypotenuse

Example 2

Q1. An aeroplane is preparing to land at Glasgow Airport. It is over Lennoxtown at present which is 15km from the airport. It is at a height of 8km.

How far away is the plane from the airport?

 $c^{2} = a^{2} + b^{2}$ $c^{2} = 15^{2} + 8^{2}$ $c^{2} = 289$

 $c = \sqrt{289} = 17$ km

Airport a = 15 Lennoxtown

С

Aeroplane

b = 8

Learning Internion

Theorem can be used to solve

red-life problems.

Solving Real-Life Problems

Success Criteria

1. Solve real-life problems using Pythagoras Theorem.

When coming across a problem involving finding a missing side in a right-angled triangle, you should consider using Pythagoras' Theorem to calculate its length.

roc

Solving Real-Life Problems

Example 2

A garden is rectangular in shape. A fence is to be put along the diagonal as shown below. What is the length of the fence.

Solving Real-Life Problems

Learning Intention

1. To show how Pythagoras

Theorem can be used to find

the length of the smaller side.

Largin of the snaller side

Success Criteria

 Use Pythagoras Theorem to find the length of smaller side.

To find the length of the smaller side of a right- angled triangle we simply rearrange Pythagoras Theorem.

Length of the smaller side

Example: Find the length of side a?

Check answer ! Always smaller than hypotenuse

$$c^{2} = a^{2} + b^{2}$$

$$a^{2} = c^{2} - b^{2}$$

$$a^{2} = 20^{2} - 12^{2}$$

$$a^{2} = 256$$

$$a = \sqrt{256} = 16 \text{ cm}$$

12cm

a cm

0cm

Check answer! Always smaller than hypotenuse

$$c^{2} = a^{2} + b^{2}$$

$$b^{2} = c^{2} - a^{2}$$

$$b^{2} = 10^{2} - 8^{2}$$

$$b^{2} = 36$$

$$b = \sqrt{36} = 6 \text{ cm}$$

Length of the smaller side

Example: Find the length of side b?

Learning Internion

1. To show how Pythagoras

Theorem can be used to find

the teng in of a line.

Finding the

Length of a Line

Success Criteria

 Apply Pythagoras Theorem to find length of a line.

2. Show all working.

Pythagoras Theorem to find the length of a Line

Learning Intention

1. To use knowledge already

gained on Pythagoras Theorem

to solve mixed problems using

Pythagoras Theorem

Success Criteria

1. Use the appropriate form Pythagoras Theorem to solving problems.

