Geometry

Areas of Regular Polygons

Goals

- Find the area of equilateral triangles.
- Know what an apothem is and be able to find its length.
- Use the apothem to find the area of a regular polygon.

Quick Review

- 30-60-90 Triangles
- Right Triangle Trigonometry
- Area of a triangle

30-60-90 Triangle

Trig Ratio Definition: Tangent

Tangent of $\angle A=\frac{\text { Opposite }}{\text { Adjacent }}$

Area of any Triangle

Area of

Area of an Equilateral Triangle

Finding h .

We can solve for h by using the Pythagorean Theorem.

Finding h.

Area of an Equilateral Triangle

S

Example
 Find the area.

Your Turn
 Find the area.

25

Example 2

The area of an equilateral triangle is 15 . Find the length of the sides.

Area of a Regular Hexagon

Divide the hexagon into six equilateral triangles.
Each triangle has an area of

$$
A=\frac{\sqrt{3}}{4} s^{2}
$$

Area of a Regular Hexagon

Multiply this by 6:

$$
A=6 \times \frac{\sqrt{3}}{4} s^{2}
$$

Example

Find the area of a regular hexagon with side length of 8.

-

Segments in a regular polygon,

Apothem

- The perpendicular distance from the center of a regular polygon to one of its sides is called the apothem or short radius. It is the same as the radius of a circle inscribed in the polygon.
- Apothem is pronounced with the emphasis on the first syllable with the a pronounced as in apple (A-puh-thum).

Apothem

Another Way to Find the Area

The area of the hexagon is equal to the area of one triangle multiplied by the number of triangles, n.

Area $=($ Area of one $\triangle) \times($ Number of $\triangle s)$

Area of one triangle

March 1, 2022

Area of one triangle

March 1, 2022

Perimeter

The perimeter of the hexagon is $\mathrm{s} \times \mathrm{n}$.

$$
p=s \times n
$$

Area of a Regular Polygon

Example

Find the area.

1. Draw a radius and an apothem.
2. What kind of triangle is formed?

$$
30^{\circ}-60^{\circ}-90^{\circ}
$$

3. What is the length of the segment marked x ?

6

Example

Find the area.

4. So what is r ?

$$
12
$$

5. And what is a?

$$
6 \sqrt{3}
$$

6. The perimeter is?

$$
72(6 \times 12)
$$

Example

Find the area.

The apothem is

$6 \sqrt{3}$
and the perimeter is 72 .
The area is

Universal Formula

Another Very Useful Formula

- Given the length of a side, s, of a regular polygon with n sides:

$$
A=\frac{n s^{2}}{4 \tan (180 / n)}
$$

- $\mathrm{n}=$ the number of sides
$\circ s=$ the length of a side

Previous Example Again

$$
A=\frac{n s^{2}}{4 \tan (180 / n)}
$$

Notice!

- In a regular hexagon, the radius is always equal to the length of a side.
- This is because we divide the hexagon into equilateral triangles.
- A hexagon is the only shape where this is true.

The Fly in the Ointment...

- If the polygon is anything other than an equilateral triangle, a square, or a regular hexagon, finding the apothem and the radius can be very challenging.
- Use what you know about 30-60-90 triangles, 45-45-90 triangles, and even trig to solve the problem.

A harder example

Find the area of the regular pentagon.

Where did 36° come from?
Each central angle measures $1 / 5$ of 360°, or 72°.

The apothem bisects the central angle. Half of 72° is 36°.

A harder example

Find the area of the regular pentagon.

What is the apothem?
6
What is the perimeter?
Don't know.
Let's find it.

A harder example

Find the area of the regular pentagon.

What trig function can be used to find x ?

TANGENT
(SOHCAHTOA)
Equation:

$$
\tan 36=\frac{x}{6}
$$

A harder example

Solve the equation:

$\tan 36=\frac{x}{6}$

Use a scientific calculator or use the table on page 845.

A harder example

$x=4.36$
One side of the pentagon measures?
$8.72(2 \times 4.36)$
The perimeter is

$$
43.59 \quad(5 \times 8.72)
$$

A harder example

The area is:

March 1, 2022

Final Example

Find the area of a regular octagon if the length of the sides is 10 .

Step 1

- Draw a regular octagon with side length 10.

Step 2

- Locate the center and draw a central angle.

Step 3

- Determine the measure of the central angle.

Step 4

- Draw the apothem.

Step 5

- The apothem bisects the angle and the side. Write their measures.

Step 6

- Use a trig function to find the apothem.

Step 7

- Find the perimeter. $\quad p=10 \times 8$

Step 8

- Find the area.

Using the area formula:

Summary

- The area of any regular polygon can be found be dividing the shape into congruent triangles, finding the area of one triangle, then multiplying by the number of triangles.
- Or, multiply the length of the apothem by the perimeter and divide that by 2 .

Practice Problems

