Geometry

Areas of Regular Polygons

Goals

- Find the area of equilateral triangles.
- Know what an apothem is and be able to find its length.
- Use the apothem to find the area of a regular polygon.

Quick Review

30-60-90 Triangles
Right Triangle Trigonometry
Area of a triangle

Trig Ratio Definition: Tangent

Area of an Equilateral Triangle

Finding h.

We can solve for h by using the Pythagorean Theorem.

Finding h.

 s^2

Example 2

The area of an equilateral triangle is 15. Find the length of the sides.

Area of a Regular Hexagon

Divide the hexagon into six equilateral triangles.

Each triangle has an area of

$$A = \frac{\sqrt{3}}{4} s^2$$

Area of a Regular Hexagon

Multiply this by 6:

Example

Find the area of a regular hexagon with side length of 8.

Apothem

- The perpendicular distance from the center of a regular polygon to one of its sides is called the apothem or short radius. It is the same as the radius of a circle inscribed in the polygon.
- Apothem is pronounced with the emphasis on the first syllable with the *a* pronounced as in apple (A-puh-thum).

Apothem

Another Way to Find the Area

The area of the hexagon is equal to the area of one triangle multiplied by the number of triangles, n.

Area = (Area of one \triangle) × (Number of \triangle s)

Area of a Regular Polygon

$A = \frac{1}{2} a p$

- a = apothem
- p = perimeter

This formula works for all <u>regular</u> polygons regardless of the number of sides.

Example

Find the area.

- 1. Draw a radius and an apothem.
- 2. What kind of triangle is formed?

 30° - 60° - 90°

3. What is the length of the segment marked x?

6

 Given the length of a side, s, of a regular polygon with n sides:

$$A = \frac{ns^2}{4\tan(180/n)}$$

n = the number of sides
s = the length of a side

$$A = \frac{ns^2}{4\tan\left(180/n\right)}$$

(6*124)/(4tan(18 0/6)) 374.1229744 ■

(graphing calculator)

Notice!

- In a regular hexagon, the radius is always equal to the length of a side.
- This is because we divide the hexagon into equilateral triangles.
- A hexagon is the <u>only</u> shape where this is true.

- If the polygon is anything other than an equilateral triangle, a square, or a regular hexagon, finding the apothem and the radius can be very challenging.
- Use what you know about 30-60-90 triangles, 45-45-90 triangles, and even trig to solve the problem.

A harder example

36°

6

Find the area of the regular pentagon.

Where did 36° come from?

Each central angle measures 1/5 of 360°, or 72°.

The apothem bisects the central angle. Half of 72° is 36°.

A harder example

A harder example

Χ

 $\tan 36 = \frac{x}{6}$

A harder example

A harder example

x = 4.36

One side of the pentagon measures? 8.72 (2×4.36) The perimeter is 43.59 (5×8.72)

The area is:

Final Example

Find the area of a regular octagon if the length of the sides is 10.

Step 1

 Oraw a regular octagon with side length 10.

Step 2

Locate the center and draw a central angle.

Step 3

Determine the measure of the central angle.

Step 4

o Draw the apothem.

Step 5

• The apothem bisects the angle and the side. Write their measures.

Use a trig function to find the apothem.

Step 7

Summary

- The area of any regular polygon can be found be dividing the shape into congruent triangles, finding the area of one triangle, then multiplying by the number of triangles.
- Or, multiply the length of the apothem by the perimeter and divide that by 2.

Practice Problems