AREA OF PART OF A CIRCLE

The Circle

mea of a SECTOR of a

GIPC

Isosceles triangles in Circles

Alia of locays Lesson

To identify isosceles triangles within a circle.

<u>Isosceles</u> triangles in Circles

When two radii are drawn to the ends of a chord, An isosceles triangle is formed.

Isosceles triangles in Circles

Solard Handred of Looses Con Alenc

Two equal lengths

Wo again angles

Angles in any triangle sum to 180°

Isosceles triangles in Circles

xº

280°

Q. Find the angle X.

 $360^{\circ} - 280^{\circ} = 80^{\circ}$

dince the invangle is iso

 $2x^{o} + 80^{o} = 180^{o}$ $2x^{o} = 100^{o}$

 $^{o} = 50^{o}$

Isosceles triangles in Circles

slond slonio-imse

Anna of Jocay's Lesson

To find the angle in a semi-circle made by a triangle with hypotenuse equal to the diameter and the two smaller lengths meeting at the circumference.

Semi-circle angle

Fool-kit required

Protractor

Ruler

Semi-circle angle

Using your pencil trace round the protractor so that you have semi-circle.

Mark the centre of the semi-circle.

You should have something like this.

Semi-circle angle

Mark three points 1. Outside the circle 2. On the circumference 3. Inside the circle

Semi-circle angle

For each of the points

Form a triangle by drawing a line from each end of the diameter to the point. Measure the angle at the various points.

Log your results in a table.

Outside	Circumference	Inside
---------	---------------	--------

Circumference

< 90° = 90°

Outside

Semi-circle angle

Inside

snil inspirat

Anna of local s Lesson

Fo understand what a tangent line is and its special property with the radius at the point of contact.

snil inspir T

A tangent line is a line that touches a circle at only one point.

Which of the lines are tangent to the circle?

snil insend

The radius of the circle that touches the tangent line is called the point of contact radius.

Special Property

The point of contact radius is always perpendicular (right-angled) to the tangent line.

0.

UTIO

snil trisgrid T

Find the length of the tangent line between A and B.

10

8

By Pythagoras Theorem we have

ed to A

 $a^{2} + b^{2} = c^{2}$ $a^{2} + 8^{2} = 10^{2}$ $a^{2} = 10^{2} - 8^{2}$ $a^{2} = 100 - 64 =$ $a = \sqrt{36} = 6$

snil insono7

Diameter symmetry

AMA OF JOGALS LESSOR

To understand some special properties when a diameter <u>bised</u> a chord

Viteminye retempid

idpoint

ee to a chara wi

ALWAYS pass through t

Diameter symmetry

Q. Find the length of the chord A and B.

By Pythagoras Theorem we have $a^{2}+b^{2}=c^{2}$ $a^{2}+6^{2}=10^{2}$ $a^{2}=10^{2}-6^{2}$ $a^{2}=100-36=64$ $a=\sqrt{64}=8$ $length_{AB}=2\times8=16$

Vitemmeter symmetry

sonsasimusais of a circle

Aim of Today's Lesson

To be able to use the formula for calculating the circumference of a circle

Sonsastmucaio of a circle

Main parts of the circle

radius

Circumference of a circle

Find the circumference of the circle

4cm

Solution

C = 25.12 cm

25

Sonsastimuzaio of a circle

Q. The circumference of the circle is 60cm ? Find the length of the diameter and radius

Solution

Circumference of a circle

length of the are of a circle

Aim of Today's Lesson

Fo find and be able to use the formula for calculating the length of an arc.

Are length of a circle

Q. What is an arc?

e circumfere

minor arc

A Ba

29

Are length of a circle

Find the circumference of the circle

62.8cm

10cm/

cm

Are length of a circle

Q. Find the length of the minor arc XY below ?

<u>Arc length</u>	_ <u>Arc angle</u>
πD	360°

arc length = $\frac{45^{\circ}}{360^{\circ}} \times (\pi \times 1)$

arc length = 4.71cm

C

60

Are length of a circle

Q. Find the length of the minor arc AB below?

<u>Arc length</u>	_ <u>Arc angle</u>
πD	360°

arc length

arc length = 9.42cm

 $\pi \times 18$

Are length of a circle

Q. Find the length of the major arc PQ below?

<u>Arc length</u>	_ <u>Arc angle</u>
πD	360°

arc length = 45.38cm

Download more resources like this on ECOLEBOOKS.COM Jength of the Cre of c circle

The Area of a circle

Aim of Today's Lesson

Fo come up with and be able to use the formula for calculating the area of a circle

rha Area of a circle

If we break the circle into equal sectors And lay them out side by side We get very close to a rectangle.

4

5

3

The Area of a circle

thinner and thinner sectors If we cut the sectors Thinner and thinner then we get closer and closer to a rectangle. Hence we can represent the area of a circle by a rectangle.

The Area of a circle

Area of a rectangle = $l \times b$ Area of a rectangle = $\pi r \times r = \pi r$

The Area of a circle

Find the area of the circle a

4cm

 $A = \pi \times 4^{2}$ $A = 50.26 \text{ cm}^{2}$

Flation of a circle

The Area of a circle

Q. The diameter of the circle is 60cm. Find area of the circle?

Solution

 $A = \pi r^{2}$ $\frac{D}{2} = \frac{60}{2} = 30cm$

 $A = \pi \times 30^{2}$ $A = 2827.43 cm^{2}$

Flation of a circle

The Area of a circle

Q. The area of a circle is 12.64 cm². Find its radius?

Solution

 $A = \pi r^{\prime}$

 $=\frac{12.64}{\pi}=4cm$

=2cm

Sector area of a circle

Aim of Today's Lesson

To find and be able to use the formula for calculating the sector of an circle.

Area of Sector in a circle

minor sector

Area of Sector in a circle

Find the area of the circle ?

45°

Area of Sector in a circle

Find the area of the minor sector XY below

<u>Area Sector</u> <u>–</u> <u>Sector angle</u> πr² 360°

Area of Sector = $\frac{45^\circ}{360^\circ} \times (\pi$

Area Sector = $14.14cm^2$

cm

60°

Area of Sector in a circle

Q. Find the area of the minor sector AB below?

AREA TO A

<u>Area Sector</u>	_	<u>Sector angle</u>	
πr^2		360°	

Area Sector = 42.41cm²

Area Sector =

Area of Sector in a circle

Q. Find the area of the major sector PQ below?

Sector Area	_	<u>Sector</u>	angle
πr^2 –		360°	

Area Sector = 226.89cm²

Sector Area = $\frac{360^\circ}{360^\circ}$

Sector area of a circle

Download more resources like this on ECOLEBOOKS.COM SUMMARY of GIRCLE Jopic

Arc length is $\frac{Arc_{length}}{\pi D} = \frac{centre \text{ angle}^{\circ}}{360^{\circ}}$

Circumference

 $C = \pi D$

= Cr

Tangent touches circle at one point and make angle 90° with point of contact radius Splits the chord into 2 equal halves. Makes right-angle with the chord. Passes through centre of the circle

Radius

Pythagoras Theorem SOHCAHTOA

Semi-circle angle is always 90°

Areais

Sector area

Area_{sector} centre angle^o