## Quadratic Equations

A quadratic is any expression of the form $a x^{2}+b x+c, a \neq 0$.

$$
(x+1)(x+3)=x^{2}+4 x+3
$$

You have already multiplied out pairs of brackets and factorised quadratic expressions.

Quadratic equations can be solved by factorising or by using a graph of the function.

1. Use the graph below to find where $x^{2}+2 x-3=0$.

$x^{2}+2 x-3=0$ when the graph crosses the $x$-axis.
$x^{2}+2 x-3=0$ when $x=-3$, and $x=1$.

Consider $(x-a)(x-b)=0$. How do we solve this?
We know that if $c \times d=0$ then either $c=0$ or $d=0$ or $c=d=0$

$$
\begin{array}{rlrl}
(x-a)(x-b) & =0 \\
x-a=0 & \text { or } & x-b=0 \\
x=a & & x=b
\end{array}
$$

1. Solve $3 t-t^{2}=0$

$$
\begin{aligned}
& 3 t-t^{2}=0 \\
& t(3-t)=0
\end{aligned}
$$

$$
\begin{array}{rl}
t=0 & 3-t
\end{array}=0
$$

$$
t=0 \text { or } t=3
$$

Download more resources like this on ECOLEBOOKS.COM
2. Solve $(x+6)(2 x-3)=0$

$$
\begin{aligned}
& x+6=0 \quad 2 x-3=0 \\
& x=-6 \quad 2 x=3 \\
& x=3 / 2 \\
& x=-6 \text { or } x=3 / 2
\end{aligned}
$$

## Reminder about factorising

1. Common factor.

$$
6 x^{2}-18=6\left(x^{2}-3\right)
$$

2. Difference of two squares.

$$
4 x^{2}-9=(2 x+3)(2 x-3)
$$

3. Factorise.

$$
x^{2}-x-2=(x-2)(x+1)
$$

## Download more resources like this on ECOLEBOOKS.COM <br> Sketching quadratic functions

To sketch a quadratic function we need to identify where possible:

The shape: $a x^{2}+b c+c$
If $a>0$ then

## If $a<0$ then

The $y$ intercept $(0, c)$
The roots by solving $a x^{2}+b x+c=0$
The axis of symmetry (mid way between the roots)
The coordinates of the turning point.

Download more resources like this on ECOLEBOOKS.COM

1. Sketch the graph of $y=5-4 x-x^{2}$

## The shape

The coefficient of $x^{2}$ is -1 so the shape is

## The Y intercept

$(0,5)$

## The roots

$$
5-4 x-x^{2}=0
$$

$$
(5+x)(x-1)=0
$$

$(-5,0)(1,0)$
The axis of symmetry
Mid way between -5 and 1 is -2


$$
x=-2
$$

The coordinates of the turning point
When $x=-2, y=9$
$(-2,9)$

Before solving a quadratic equation make sure it is in its standard form.

$$
a x^{2}+b x+c=0
$$

1. Solve $4 x^{2}+1=5 x$

$$
\begin{array}{r}
4 x^{2}-5 x+1=0 \\
(4 x-1)(x-1)=0
\end{array}
$$

$$
4 x-1=0 \quad x-1=0
$$

$$
4 x=1 \quad x=1
$$

$$
x=\frac{1}{4}
$$

$$
x=1 / 4 \text { or } x=1
$$

Download more resources like this on ECOLEBOOKS.COM

## Solving quadratic equations using a formula

What happens if you cannot factorise the quadratic equation?

You've guessed it. We use a formula.

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

1. Solve the equation $2 x^{2}-5 x-1=0$.
compare with $a x^{2}+b x+c=0$

$$
a=2, b=-5, c=-1
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
=\frac{5 \pm \sqrt{(-5)^{2}-4 \times 2 \times(-1)}}{2 \times 2}
$$

$=\frac{5 \pm \sqrt{25+8}}{4}$
$=\frac{5+\sqrt{33}}{4}$ and $\frac{5-\sqrt{33}}{4}$
$=\underline{2.69 \text { and }-0.19}$ correct to 2 d.p.

## Straight lines and parabolas

In this chapter we will find the points where a straight line intersects a parabola.

1. Find the coordinates of the points where the line $y=x+1$ cuts the parabola with equation $y=x^{2}-5 x+6$.


At the points of intersection $A$ and $B$, the equations are equal.
$x^{2}-5 x+6=x+1$
$x^{2}-6 x+5=0$
$(x-1)(x-5)=0$
$x=1$ and $x=5 \quad y=x+1$
$A(1,2)$ and $B(5,6)$

## Download more resources like this on ECOLEBOOKS.COM <br> Quadratic equations as mathematical models

1. The length of a rectangular tile is 3 m more than its breadth. It's area is $18 \mathrm{~m}^{2}$. Find the length and breadth of the carpet.


$$
\begin{aligned}
A & =l \times b \\
18 & =x(x+3) \\
x \quad x^{2}+3 x & =18 \\
x^{2}+3 x-18 & =0 \\
(x+6)(x-3) & =0 \\
x+6=0 \quad x-3 & =0 \\
x-6 \quad x & =3
\end{aligned}
$$

Not a possible solution

Breadth of the carpet is 3 m and the length is 6 m .

## Trial and Improvement

The point at which a graph crosses the $x$-axis is known as a root of the function. When a graph crosses the $x$-axis the $y$ value changes from negative to positive or positive to negative.

$f(x)>0$ at $x=a$
$f(x)<0$ at $x=b$


$$
\begin{aligned}
& f(x)<0 \text { at } x=a \\
& f(x)>0 \text { at } x=b
\end{aligned}
$$

A root exists between $a$ and $b$.
A root exists between $a$ and $b$.

The process for finding the root is known as iteration.
If $f$ is the function defined by $f(x)=x^{2}+x-4$, show that a root exists between 1 and 2 and find this root to 2 decimal places.
$f(1)=-2$
$f(2)=2$

| $x$ | $f(x)$ | Root lies between |
| :--- | :---: | :--- |
| 1 | -2 |  |
| 2 | 2 | 1 and 2 |
| 1.5 | -0.25 | 1.5 and 2 |
| 1.6 | 0.16 | 1.5 and 1.6 |
| 1.55 | -0.048 | 1.55 and 1.6 |
| 1.56 | -0.006 | 1.56 and 1.6 |
| 1.57 | 0.035 | 1.56 and 1.57 |
| 1.565 | 0.014 | 1.56 and $1.565 \quad$ Hence the root is 1.56 to 2 d.p. |

# Solving Quadratic Equations 

## Graphically

## What is to be learned?

- How to solve quadratic equations by looking at a graph.


## Laughably Easy (sometimes)

## Solve $x^{2}-2 x-8=0$



## Laughably Easy (sometimes)

## Solve $x^{2}-2 x-8=0$



## Solve $x^{2}-8 x+7=0$



But.... Exam Type Question

## $Y=x^{2}+6 x+8$ Find $A$ and $B$ <br> Not given $x$ values



$$
A(-4,0) \quad B(-2,0)
$$



Factorise or quadratic formula

## Solving Quadratic Equations Graphically

## Solutions occur where $y=0$

Where graph cuts $\mathbf{X}$ axis
Known as roots.

