CIRCLE THEOREMS

LESSON OBJECTIVES - STUDENTS WILL:

- APPLY YOUR KNOWLEDGE OF CIRCLE PROPERTIES TO SOLVING PROBLEMS.
- IDENTIFY AND APPLY CIRCLE THEOREMS.

LEVEL 1 LEARN	Complete "Circle Theorem" lesson LEVEL 2 REVISE
Revise Circle Properties page 408 - 409 Theorem 1 - Subtended angle at centre (p. 411), Theorem 2 - Angle in a semi-circle (p. 412), Theorem 3 - Angle in same segment (p. 415) Theorem 4 - Angles in cyclic quadratic (p. 415) (GCSE Math TEXT - red and blue)	
Try these: Page 410 \#2,3, Page 413 \#1,5,6, Page 417 $\# 1,2,4,10$	
TEST	Circle Theorem TEST Go to htt:://www. bbc.co.uk/schools/gcsebitesize/maths/shapes/ Scroll to "Circle - Higher", then click "Test"

Contents

S5 Circles

- S5.1 Naming circle parts
- S5.2 Angles in a circle
- S5.3 Tangents and chords
- S5.4 Circumference and arc length
- S5.5 Areas of circles and sectors

Naming the parts of a circle

A circle is a set of points equidistant from its centre.
The distance around the outside of a circle is called the circumference.

The radius is the distance from the centre of the circle to the circumference.

The diameter is the distance across the width of the circle through the centre.

Arcs and sectors

An arc is a part of the circumference.

When an arc is bounded by two radii a sector is formed.

Contents

S5 Circles

- S5.1 Naming circle parts
- S5.2 Angles in a circle
- S5.3 Tangents and chords
- S5.4 Circumference and arc length
- S5.5 Areas of circles and sectors

Download more resources like this on ECOLEBOOKS.COM
 Right angles in a semicircle

The angle in a semicircle is always 90°

We have just seen a demonstration that the angle in a semicircle is always a right angle.

We can prove this result as follows:

Draw a line from C to O . This line is a radius of the circle.

In triangle AOC,

$$
O A=O C
$$

(both radii)
So, angle OAC = angle OCA
(angles at the base of an isosceles triangle)
Let's call these angles x.

We have just seen a demonstration that the angle in a semicircle is always a right angle.

We can prove this result as follows:

In triangle BOC,

$$
O B=O C
$$

So, angle OBC = angle OCB
(angles at the base of an isosceles triangle)

Let's call these angles y.
(m)

We have just seen a demonstration that the angle in a semicircle is always a right angle.

We can prove this result as follows:

In triangle ABC ,

$$
\begin{aligned}
x+x+y+y & =180^{\circ} \text { (angles in a triangle) } \\
2 x+2 y & =180^{\circ} \\
2(x+y) & =180^{\circ} \\
x+y & =90^{\circ}
\end{aligned}
$$

Angle ACB $=x+y=90^{\circ}$

Calculating the size of unknown angles

Calculate the size of the labeled angles in the following diagram:

$$
\begin{aligned}
& a=37^{\circ} \quad \text { (angles at the base of an } \\
& \quad \text { isosceles triangle) } \\
& b=90^{\circ}-37^{\circ} \\
&=53^{\circ} \quad \text { (angle in a semi-circle) } \\
& c=53^{\circ} \quad \text { (angles at the base of an } \\
& \text { isosceles triangle) } \\
& d=180^{\circ}-2 \times 53^{\circ} \\
&=74^{\circ} \quad \text { (angles in a triangle) } \\
& e=180^{\circ}-74^{\circ} \\
&=106^{\circ} \quad \text { (angles on a line) }
\end{aligned}
$$

The angle at the centre is twice the angle at the circumference

The angle at the centre

We have just seen a demonstration that the angle at the centre of a circle is twice the angle at the circumference.

We can prove this result as follows:

Draw a line from B, through the centre O , and to the other side D .

In triangle AOB ,

$$
O A=O B
$$

So, angle OAB = angle OBA
(angles at the base of an isosceles triangle)

Let's call these angles x.

The angle at the centre

We have just seen a demonstration that the angle at the centre of a circle is twice the angle at the circumference.

We can prove this result as follows:

In triangle BOC,

$$
O B=O C
$$

(both radii)
So, angle OBC = angle OCB
(angles at the base of an isosceles triangle)

Let's call these angles y.
(m)

The angle at the centre

We have just seen a demonstration that the angle at the centre of a circle is twice the angle at the circumference.

We can prove this result as follows:

\quad angle AOD $=2 x$
and \quad angle COD $=2 y$
(the exterior angle in a triangle is
equal to the sum of the opposite
interior angles)
angle $\mathrm{AOC}=2 x+2 y$
$\quad=2(x+y)$
angle $\mathrm{ABC}=x+y$
\therefore angle AOC $=2 \times$ angle ABC

Calculating the size of unknown angles

Calculate the size of the labeled angles in the following diagram:

$$
\begin{aligned}
& a=29^{\circ} \quad \begin{aligned}
(\text { angles at the base of an } \\
\text { isosceles triangle) }
\end{aligned} \\
& b=180^{\circ}-2 \times 29^{\circ} \\
&=122^{\circ}(\text { angles in a triangle }) \\
& c=122^{\circ} \div 2 \\
&=61^{\circ} \quad \text { (angle at the centre is } \\
& \quad \text { twice angle on the } \\
& \text { circumference) } \\
& d=180^{\circ}-\left(29^{\circ}+29^{\circ}+41^{\circ}+61^{\circ}\right) \\
&=20^{\circ} \quad(\text { angles in a triangle })
\end{aligned}
$$

Angles in the same segment are equal.

Angles in the same segment

We have just seen a demonstration that the angles in the same segment are equal.

We can prove this result as follows:

Mark the centre of the circle O and angle AOB.
angle $\mathrm{ADB}=1 / 2$ of angle AOB and angle $\mathrm{ACB}=1 / 2$ of angle AOB
(the angle at the centre of a circle is twice the angle at the circumference)
$\therefore \quad$ angle ADB $=$ angle ACB

Calculating the size of unknown angles

Calculate the size of the labeled angles in the following diagram:

$$
\begin{aligned}
& a=90^{\circ}-51^{\circ} \\
&=39^{\circ} \quad \text { (angle in a semi-circle) } \\
& b=180^{\circ}-\left(90^{\circ}+44^{\circ}\right) \\
&=46^{\circ} \quad \text { (angles in a triangle) } \\
& c=46^{\circ} \quad \begin{array}{l}
\text { (angles in the same } \\
\text { segment) }
\end{array} \\
& d=51^{\circ} \quad \begin{array}{l}
\text { (angles in the same } \\
\text { segment) }
\end{array}
\end{aligned}
$$

Download more resources like this on ECOLEBOOKS.COM
 Angles in a cyclic quadrilateral

Opposite angles in a cyclic quadrilateral add up to 180°
3090000

Angles in a cyclic quadrilateral

We have just seen a demonstration that the opposite angles in a cyclic quadrilateral add up to 180°.

We can prove this result as follows:

Mark the centre of the circle O and label angles ABC and ADC x and y.

The angles at the centre are $2 x$ and $2 y$.
(the angle at the centre of a circle is twice the angle at the circumference)

$$
\begin{aligned}
2 x+2 y & =360^{\circ} \\
2(x+y) & =360^{\circ} \\
x+y & =180^{\circ}
\end{aligned}
$$

Angles in a cyclic quadrilateral

As a result of this theorem we can conclude that is the opposite angle of a quadrilateral add up to 180° a circle can be drawn through each of its vertices.

For example, the opposite angles in this quadrilateral add up to 180°.

It is a cyclic quadrilateral.

Remember that when two angles add up to 180° they are often called supplementary angles.

Calculating the size of unknown angles

Calculate the size of the labeled angles in the following diagram:
cyclic quadrilateral)

$$
\begin{aligned}
& a=64^{\circ} \text { (angle at the centre) } \\
& b=c=\left(180^{\circ}-128^{\circ}\right) \div 2 \\
& =26^{\circ} \text { (angles at the base of } \\
& \text { an isosceles triangle) } \\
& d=33^{\circ} \text { (angles at the base of an } \\
& \text { isosceles triangle) } \\
& e=180^{\circ}-2 \times 33^{\circ} \\
& =114^{\circ} \text { (angles in a triangle) } \\
& f=180^{\circ}-(e+c) \\
& =180^{\circ}-140^{\circ} \\
& =40^{\circ} \text { (opposite angles in a }
\end{aligned}
$$

Contents

S5 Circles

- S5.1 Naming circle parts
- S5.2 Angles in a circle
- S5.3 Tangents and chords
- S5.4 Circumference and arc length
- S5.5 Areas of circles and sectors

The angle between the tangent and the radius is 90° at the point of contact.

The perpendicular from the centre to a chord

The perpendicular from the centre of a circle to a chord bisects the chord.

The angle between a tangent and a chord is equal to the angle in the alternate segment

Contents

S5 Circles

- S5.1 Naming circle parts
- S5.2 Angles in a circle
- S5.3 Tangents and chords
- S5.4 Circumference and arc length
- S5.5 Areas of circles and sectors

For any circle the circumference is always just over three times bigger than the radius.

The exact number is called π (pi).
We use the symbol π because the number cannot be written exactly.

$$
\begin{aligned}
& \pi=3.141592653589793238462643383279502884197169 \\
& 39937510582097494459230781640628620899862803482 \\
& 53421170679821480865132823066470938446095505822 \\
& 31725359408128481117450284102701938521105559644 \\
& 62294895493038196 \text { (to } 200 \text { decimal places)! }
\end{aligned}
$$

When we are doing calculations involving the value π we have to use an approximation for the value.

For a rough approximation we can use 3.
Better approximations are 3.14 or $\frac{22}{7}$.
We can also use the π button on a calculator.
Most questions will tell you what approximations to use.
When a calculation has lots of steps we write π as a symbol throughout and evaluate it at the end, if necessary.

The circumference of a circle

For any circle,

$$
\pi=\frac{\text { circumference }}{\text { diameter }}
$$

or,

$$
\pi=\frac{C}{d}
$$

We can rearrange this to make an formula to find the circumference of a circle given its diameter.

$$
\mathrm{C}=\pi d
$$

The circumference of a circle

$$
\text { Use } \pi=3.14 \text { to find the circumference of this circle. }
$$

$$
\begin{aligned}
C & =\pi d \\
& =3.14 \times 9.5 \\
& =29.83 \mathrm{~cm}
\end{aligned}
$$

Finding the circumference given the radius

The diameter of a circle is two times its radius, or

$$
d=2 r
$$

We can substitute this into the formula

$$
\mathrm{C}=\pi d
$$

to give us a formula to find the circumference of a circle given its radius.

$$
C=2 \pi r
$$

The circumference of a circle

Use $\pi=3.14$ to find the circumference of the following circles:

$$
\begin{aligned}
C & =2 \pi r \\
& =2 \times 3.14 \times 9 \\
& =56.52 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
C & =\pi d \\
& =3.14 \times 23 \\
& =72.22 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
C & =2 \pi r \\
& =2 \times 3.14 \times 58 \\
& =364.24 \mathrm{~cm}
\end{aligned}
$$

Finding the radius given the circumference

Use $\pi=3.14$ to find the radius of this circle.

$$
C=2 \pi r
$$

How can we rearrange this to make r the subject of the formula?

$$
\begin{aligned}
r & =\frac{C}{2 \pi} \\
& =\frac{12}{2 \times 3.14}
\end{aligned}
$$

$$
=1.91 \mathrm{~cm} \text { (to } 2 \mathrm{dl.p.} \text {) }
$$

Finding the length of an arc

What is the length of $\operatorname{arc} A B$?

An arc is a section of the circumference.

The length of $\operatorname{arc} A B$ is a fraction of the length of the circumference.

To work out what fraction of the circumference it is we look at the angle at the centre.

In this example, we have a 90° angle at the centre.

Finding the length of an arc

What is the length of arc AB?

The arc length is $\frac{1}{4}$ of the circumference of the circle.

This is because,

$$
\frac{90^{\circ}}{360^{\circ}}=\frac{1}{4}
$$

So,
Length of $\operatorname{arc} A B=\frac{1}{4} \times 2 \pi r$

$$
=\frac{1}{4} \times 2 \pi \times 6
$$

Length of arc $\mathrm{AB}=9.42 \mathrm{~cm}$ (to 2 d.p.)

For any circle with radius r and angle at the centre θ,

$$
\begin{aligned}
& \text { Arc length } \mathrm{AB}=\frac{\theta}{360} \times 2 \pi r \\
& \text { Arc length } \mathrm{AB}=\frac{2 \pi r \theta}{360}=\frac{\pi r \theta}{180}
\end{aligned}
$$

The perimeter of shapes made from arcs

Find the perimeter of these shapes on a cm square grid:

The perimeter of this shape is made from three semi-circles.
Perimeter $=\frac{1}{2} \times \pi \times 6+$ $\frac{1}{2} \times \pi \times 4+$ $\frac{1}{2} \times \pi \times 2$
$=6 \pi \mathrm{~cm}$
$=18.85 \mathrm{~cm}$ (to 2 dip.)

$\frac{40^{\circ}}{360^{\circ}}=\frac{1}{9}$
Perimeter $=\frac{1}{9} \times \pi \times 12+$ $\frac{1}{9} \times \pi \times 6+$
$3+3$
$=2 \pi+6$
$=12.28 \mathrm{~cm}$ (to 2 dip.)

Contents

S5 Circles

- S5.1 Naming circle parts
- S5.2 Angles in a circle
- S5.3 Tangents and chords
- S5.4 Circumference and arc length
- S5.5 Areas of circles and sectors

We can find the area of a circle using the formula

Area of a circle $=\pi \times r \times r$

or

Area of a circle $=\pi r^{2}$

The area of a circle

Use $\pi=3.14$ to find the area of this circle.

$$
\begin{aligned}
\mathrm{A} & =\pi r^{2} \\
& =3.14 \times 7^{2} \\
& =153.86 \mathrm{~cm}^{2}
\end{aligned}
$$

Finding the area given the diameter

The radius of a circle is half of its radius, or

$$
r=\frac{d}{2}
$$

We can substitute this into the formula

$$
\mathrm{A}=\pi r^{2}
$$

to give us a formula to find the area of a circle given its diameter.

$$
\mathrm{A}=\frac{\pi d^{2}}{4}
$$

The area of a circle

Use $\pi=3.14$ to find the area of the following circles:

$$
\begin{aligned}
\mathrm{A} & =\pi r^{2} \\
& =3.14 \times 5^{2} \\
& =78.5 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A} & =\pi r^{2} \\
& =3.14 \times 23^{2} \\
& =1661.06 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
A & =\pi r^{2} \\
& =3.14 \times 39^{2} \\
& =4775.94 \mathrm{~cm}^{2}
\end{aligned}
$$

Finding the area of a sector

What is the area of this sector?

We can use this method to find the area of any sector.

For any circle with radius r and angle at the centre θ,

$$
\text { Area of sector } \mathrm{AOB}=\frac{\theta}{360} \times \pi r^{2} \quad \begin{aligned}
& \text { This is the area of } \\
& \text { the circle. }
\end{aligned}
$$

$$
\text { Area of sector } \mathrm{AOB}=\frac{\pi r^{2} \theta}{360}
$$

The area of shapes made from sectors

Find the area of these shapes on a cm square grid:

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times \pi \times 3^{2} \\
& +\frac{1}{2} \times \pi \times 1^{2} \\
& -\frac{1}{2} \times \pi \times 2^{2} \\
& =3 \pi \mathrm{~cm}^{2} \\
& \left.=9.42 \mathrm{~cm}^{2} \text { (to } 2 \text { d.p. }\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{40^{\circ}}{360^{\circ}}=\frac{1}{9} \\
\text { Area }= & \frac{1}{9} \times \pi \times 6^{2} \\
& -\frac{1}{9} \times \pi \times 4^{2} \\
= & \frac{1}{9} \times \pi \times 20 \mathrm{~cm}^{2} \\
= & \left.6.98 \mathrm{~cm}^{2} \text { (to } 2 \mathrm{~d} . \text { p. }\right)
\end{aligned}
$$

