CIRCLE THEOREMS

LESSON OBJECTIVES - STUDENTS WILL:

- APPLY YOUR KNOWLEDGE OF CIRCLE PROPERTIES TO SOLVING PROBLEMS.
- IDENTIFY AND APPLY CIRCLE THEOREMS.

LEVEL 1 LEARN	Complete "Circle Theorem" lesson
LEVEL 2 REVISE	Revise Circle Properties page 408 - 409 Theorem 1 - Subtended angle at centre (p. 411), Theorem 2 - Angle in a semi-circle (p. 412), Theorem 3 - Angle in same segment (p. 415) Theorem 4 - Angles in cyclic quadratic (p. 415) (GCSE Math TEXT - red and blue) Try these: Page 410 #2,3, Page 413 #1,5,6, Page 417 #1,2,4,10
LEVEL 3 TEST	Circle Theorem TEST Go to <u>http://www.bbc.co.uk/schools/gcsebitesize/maths/shapes/</u> Scroll to "Circle - Higher", then click "Test"

Contents

Naming the parts of a circle

The distance around the outside of a circle is called the **circumference**.

The radius is the distance from the centre of the circle to the circumference.

The **diameter** is the distance across the width of the circle through the centre.

Arcs and sectors

An **arc** is a part of the circumference.

When an arc is bounded by two **radii** a **sector** is formed.

A line moving through a circle

Naming the parts of a circle

Contents

Right angles in a semicircle

Right angles in a semicircle

We have just seen a demonstration that the angle in a semicircle is always a right angle.

We can **prove** this result as follows:

Draw a line from C to O. This line is a radius of the circle. In triangle AOC, OA = OC(both radii) So, angle OAC = angle OCA (angles at the base of an isosceles triangle)

Let's call these angles x.

Right angles in a semicircle

We have just seen a demonstration that the angle in a semicircle is always a right angle.

We can **prove** this result as follows:

In triangle BOC,

OB = OC (both radii)

So, angle OBC = angle OCB

(angles at the base of an isosceles triangle)

Let's call these angles y.

Right angles in a semicircle

We have just seen a demonstration that the angle in a semicircle is always a right angle.

We can **prove** this result as follows:

In triangle ABC,

 $x + x + y + y = 180^{\circ} \text{(angles in a triangle)}$ $2x + 2y = 180^{\circ}$ $2(x + y) = 180^{\circ}$ $x + y = 90^{\circ}$

Angle ACB = $x + y = 90^{\circ}$

Calculating the size of unknown angles

Calculate the size of the labeled angles in the following diagram:

 $a = 37^{\circ}$ (angles at the base of an isosceles triangle)

 $b = 90^\circ - 37^\circ$

= 53° (angle in a semi-circle)

 $c = 53^{\circ}$ (angles at the base of an isosceles triangle)

 $d = 180^{\circ} - 2 \times 53^{\circ}$

= 74° (angles in a triangle)

 $e=180^\circ-74^\circ$

= 106° (angles on a line)

The angle at the centre

The angle at the centre

We have just seen a demonstration that the angle at the centre of a circle is twice the angle at the circumference.

We can prove this result as follows:

Draw a line from B, through the centre O, and to the other side D. In triangle AOB, OA = OB(both radii) So, angle OAB = angle OBA(angles at the base of an isosceles triangle) Let's call these angles x.

The angle at the centre

We have just seen a demonstration that the angle at the centre of a circle is twice the angle at the circumference.

We can prove this result as follows:

In triangle BOC, OB = OC (both radii) So, angle OBC = angle OCB (angles at the base of an isosceles triangle)

Let's call these angles y.

The angle at the centre

We have just seen a demonstration that the angle at the centre of a circle is twice the angle at the circumference.

We can prove this result as follows:

angle AOD = 2xangle COD = 2yand (the exterior angle in a triangle is equal to the sum of the opposite interior angles) angle AOC = 2x + 2y= 2(x + y)angle ABC = x + y \therefore angle AOC = 2 × angle ABC

Calculating the size of unknown angles

Calculate the size of the labeled angles in the following diagram:

a = 29° (angles at the base of an isosceles triangle)

 $b = 180^\circ - 2 \times 29^\circ$

= 122° (angles in a triangle)

 $c = 122^{\circ} \div 2$

= 61° (angle at the centre is twice angle on the circumference)

 $d = 180^{\circ} - (29^{\circ} + 29^{\circ} + 41^{\circ} + 61^{\circ})$ = 20° (angles in a triangle)

Angles in the same segment

Angles in the same segment

We have just seen a demonstration that the angles in the same segment are equal.

We can prove this result as follows:

Mark the centre of the circle O and angle AOB.

angle ADB = $\frac{1}{2}$ of angle AOB

and angle $ACB = \frac{1}{2}$ of angle AOB

(the angle at the centre of a circle is twice the angle at the circumference)

angle ADB = angle ACB

Calculating the size of unknown angles

Calculate the size of the labeled angles in the following diagram:

 $a = 90^{\circ} - 51^{\circ}$ = 39° (angle in a semi-circle)

d = 51° (angles in the same segment)

Angles in a cyclic quadrilateral

Download more resources like this on ECOLEBOOKS.COM Angles in a cyclic quadrilateral

We have just seen a demonstration that the opposite angles in a cyclic quadrilateral add up to 180°.

We can prove this result as follows:

Mark the centre of the circle O and label angles ABC and ADC *x* and *y*.

The angles at the centre are 2x and 2y.

(the angle at the centre of a circle is twice the angle at the circumference)

$$2x + 2y = 360^{\circ}$$

 $2(x + y) = 360^{\circ}$
 $x + y = 180^{\circ}$

Download more resources like this on ECOLEBOOKS.COM Angles in a cyclic quadrilateral

As a result of this theorem we can conclude that is the opposite angle of a quadrilateral add up to 180° a circle can be drawn through each of its vertices.

For example, the opposite angles in this quadrilateral add up to 180°.

It is a cyclic quadrilateral.

Remember that when two angles add up to 180° they are often called **supplementary angles**.

ources like this on ECOLEBOOKS.COM

Calculating the size of unknown angles

Calculate the size of the labeled angles in the following diagram:

 $a = 64^{\circ}$ (angle at the centre)

 $b = c = (180^{\circ} - 128^{\circ}) \div 2$ $= 26^{\circ}$ (angles at the base of an isosceles triangle)

 $d = 33^{\circ}$ (angles at the base of an isosceles triangle)

$$e = 180^\circ - 2 \times 33^\circ$$

= 114° (angles in a triangle)

$$f = 180^\circ - (e + c)$$

$$= 180^{\circ} - 140^{\circ}$$

 $= 40^{\circ}$ (opposite angles in a cyclic quadrilateral)

Contents

The tangent and the radius

Two tangents from a point

The perpendicular from the centre to a chord

The alternate segment theorem

Contents

The value of π

For any circle the circumference is always just over three times bigger than the radius.

The exact number is called π (pi).

We use the symbol π because the number cannot be written exactly.

 $\pi = 3.141592653589793238462643383279502884197169$ 39937510582097494459230781640628620899862803482 53421170679821480865132823066470938446095505822 31725359408128481117450284102701938521105559644 62294895493038196 (to 200 decimal places)!

Download more resources like this on ECOLEBOOKS.COM Approximations for the value of π

When we are doing calculations involving the value π we have to use an approximation for the value.

For a rough approximation we can use 3.

Better approximations are 3.14 or $\frac{22}{7}$.

We can also use the π button on a calculator.

Most questions will tell you what approximations to use.

When a calculation has lots of steps we write π as a symbol throughout and evaluate it at the end, if necessary.

The circumference of a circle

We can rearrange this to make an formula to find the circumference of a circle given its diameter.

$$C = \pi d$$

The circumference of a circle

Finding the circumference given the radius

The diameter of a circle is two times its radius, or

$$d = 2r$$

We can substitute this into the formula

$$C = \pi d$$

to give us a formula to find the circumference of a circle given its radius.

$$C = 2\pi r$$

The circumference of a circle

Use π = 3.14 to find the circumference of the following circles:

Finding the radius given the circumference

Finding the length of an arc

What is the length of arc AB?

An arc is a section of the circumference.

The length of arc AB is a fraction of the length of the circumference.

To work out what fraction of the circumference it is we look at the angle at the centre.

In this example, we have a 90° angle at the centre.

Finding the length of an arc

Length of arc AB = 9.42 cm (to 2 d.p.)

Finding the length of an arc

For any circle with radius *r* and angle at the centre θ ,

Arc length AB = $\frac{\theta}{360} \times 2\pi r$ This circle the

Arc length AB =
$$\frac{2\pi r\theta}{360} = \frac{\pi r\theta}{180}$$

This is the circumference of the circle.

Download more resources like this on ECOLEBOOKS.COM Finding the length of an arc

The perimeter of shapes made from arcs

Find the perimeter of these shapes on a cm square grid:

The perimeter of this shape is made from three semi-circles.

Perimeter =
$$\frac{1}{2} \times \pi \times 6 + \frac{1}{2} \times \pi \times 4 + \frac{1}{2} \times 4 +$$

$$\frac{1}{2} \times \pi \times 2$$

 $= 6\pi$ cm

= 18.85 cm (to 2 d.p.)

$$\frac{40^{\circ}}{360^{\circ}} = \frac{1}{9}$$
Perimeter = $\frac{1}{9} \times \pi \times 12 + \frac{1}{9} \times \pi \times 6 + \frac{1}{9} \times \pi \times 6 + \frac{3}{3} + 3$

$$= 2\pi + 6$$

$$= 12.28 \text{ cm (to 2 d.p.)}$$

Contents

Download more resources like this on ECOLEBOOKS.COM Formula for the area of a circle

We can find the area of a circle using the formula

Area of a circle = $\pi \times r \times r$

or

Area of a circle = πr^2

The area of a circle

Finding the area given the diameter

The radius of a circle is half of its radius, or

$$r = \frac{d}{2}$$

We can substitute this into the formula

$$\mathsf{A} = \pi r^2$$

to give us a formula to find the area of a circle given its diameter.

$$A = \frac{\pi d^2}{4}$$

The area of a circle

Use π = 3.14 to find the area of the following circles:

Finding the area of a sector

What is the area of this sector?

We can use this method to find the area of any sector.

Finding the area of a sector

For any circle with radius *r* and angle at the centre θ , Area of sector AOB = $\frac{\theta}{360} \times \frac{\pi r^2}{\pi r^2}$ the circle.

Area of sector AOB = $\frac{\pi r^2 \theta}{360}$

Finding the area of a sector

The area of shapes made from sectors

