

Objectives

Describe how Mendeleev arranged the elements in the periodic table
 Explain how the predictions Mendeleev made and the discovery on new elements demonstrated the usefulness of his periodic table

History on the Organization of Elements

- Antoine Lavoiser
 - organized known elements (very few) into metals, non metals, gases, and earths
- Dmitri Mendeleev
 - organization based on a popular card game solitaire
 - each card had the elements name, mass, and properties
 - lined up the cards in order of increasing <u>mass</u>, found a pattern
 - elements with similar <u>properties</u> were in the same column

Mendeleev

Group I	Group II Group III		Group IV	Group V	Group VI	Group VII	Group VIII	
H = 1								
Li = 7	Be = 9.4	B = 11	C = 12	N = 14	O = 16	F = 19		
Na = 23 K = 39	Mg = 24 Ca = 40	Al = 27.3 = 44	Si = 28 Ti = 48	P = 31 V = 51	S = 32 Cr = 52	Cl = 35.5 Mn = 55	Fe = 56, Co = 59, Ni = 59, Cu = 63.	
(Cu = 63) Rb = 85	Zn = 65 Sr = 87	= 68 Yt = 88	— = 72 Zr = 90	As = 75 Nb = 94	Se = 78 Mo = 96	Br = 80 = 100	Ru = 104, Rh = 104, Pd = 106, Ag = 108, Ag = 108, Rh =	
(Ag = 108) Cs = 133	Cd = 112 Ba = 137	In = 113 Di = 138	Sn = 118 Ce = 140	Sb = 122	Te = 125	I = 127		
_ ()		 Er = 178	 La = 180	 Ta = 182	 W = 184	-	Os = 195, Ir = 197, Pt = 198, Au = 199.	
(Au = 199)	Hg = 200	Tl = 204	Pb = 207 Th = 231	Bi = 208	U = 240			

Predictions

- could not make a complete table, only had 63 elements leaving many <u>spaces</u> between elements
- used <u>properties</u> of other elements to predict undiscovered elements properties

Mendeleev

Evidence

- named some of the missing elements, and predicted some of their properties
 as elements were found scientists were able to verify
 - properties and even explain chemical behaviors of elements in groups

Periodic Law

- Medeleev's periodic table was completed before the discovery of protons.
- by looking at certain <u>trends</u>, among the elements a new organization was created
- Periodic Law
 - pattern of repeating <u>properties</u> displayed by elements in the periodic table

SO....the periodic table is now arranged by <u>atomic</u> <u>number</u> instead of <u>atomic mass</u>

Objectives

Section The Arrangement of elements in the modern periodic table

- Understand the trends that established the modern periodic table
- * Locate periods and groups in the period table

Valence Electrons

Definition

- an electron that is in the <u>highest</u> occupied <u>energy</u> <u>level</u> of an atom

- determine the properties of elements

Valence Electrons Cont.

Remember your shells: 2e-,8e-,8e-,18e-,18e-,32e- ex. <u>Sodium</u> <u>Neon</u>

** Group number or group number – 10**

Lewis Dot Structures

- electron dot diagram, where each dot represents a valence electron

ex.

Practice Problems

Br

K

A1

Definition

- an atom or group of atoms that has a positive or negative <u>charge</u> ex. Cl⁻, Ca²⁺

Formation of Ions

- atom gains or loses <u>electrons</u> (protons electrons)
- atom is no longer neutral
- become a cation or an anion

lons Cont.

cation (+): <u>lost</u> electrons
now name of atom + *ion* : sodium *ion*anion (-): <u>gained</u> electrons
now ends in <u>*ide*</u>: <u>Chloride</u>

Atomic Radii:

- <u>half</u> the <u>distance</u> between the nuclei of the same atoms <u>bonded</u> together

Trends of the Atomic Radii

- at certain intervals, atomic radii is dramatically greater than that of the previous element

Trends of the Atomic Radii

Ionization energy:

- amount of <u>energy</u> required to pull an electron away from an atom to form a positively charged ion

- generally increases with increasing <u>atomic</u> <u>number</u>

- at some points, when atomic number increases there is a dramatic <u>decrease</u>

ex. Li, Na, K, Rb, Cs, Fr

Trends of Ionization Energy

Trends of Ionization Energy

									Ator	mic									
	1	1 H 1312					6		_ num	iber									Group 18 2 He
	2	Group 1 3 Li 520	Group 2 4 Be 900				108	36_	— Sym	ibol	tion			Group 13 5 B 801	Group 14 6 C 1086	Group 15 7 N 1402	Group 16 8 0 1314	Group 17 9 F 1681	2372 10 Ne 2081
	3	11 Na 496	12 Mg 738	Group 3	Group 4	Group 5	Group 6	Group 7	ener Group 8	'gy Group 9	Group 10	Group 11	Group 12	13 A 578	14 Si 787	15 P 1012	16 S 1000	17 Cl 1251	18 Ar 1521
Perioo	4	19 K 419	20 Ca 590	21 Sc 633	22 Ti 659	23 V 651	24 Cr 653	25 Mn 717	26 Fe 762	27 Co 760	28 Ni 737	29 Cu 746	30 Zn 906	31 Ga 579	32 Ge 762	33 As 947	34 Se 941	35 Br 1140	36 Kr 1351
	5	37 Rb 403	38 Sr 550	39 Y 600	40 Zr 640	41 Nb 652	42 Mo 684	43 Tc 702	44 Ru 710	45 Rh 720	46 Pd 804	47 Ag 731	48 Cd 868	49 In 558	50 Sn 709	51 Sb 834	52 Te 869	53 1008	54 Xe 1170
	6	55 Cs 376	56 Ba 503	57 La 538	72 Hf 659	73 Ta 761	74 W 770	75 Re 760	76 Os 839	77 Ir 878	78 Pt 868	79 Au 890	80 Hg 1007	81 TI 589	82 Pb 716	83 Bi 703	84 PO 812	85 At	86 Rn 1038
	7	87 Fr	88 Ra 509	89 Ac 490	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt									

Lanthanide series

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	HO	Er	Tm	Yb	Lu
534	527	533	536	545	547	592	566	573	581	589	597	603	523
90 Th 587	91 Pa 570	92 U 598	93 Np 600	94 Pu 585	95 Am 578	96 Cm 581	97 Bk 601	98 Cf 608	99 Es 619	100 Fm 627	101 Md 635	102 No 642	103 Lr

* Because other properties of the elements follow the same pattern, it is natural to group the elements according to these intervals

- each row is commonly referred to as a period

- there are 7 periods
- each period is placed on top of each other, giving rise to columns, known as a group

- slight modifications of He; nothing in common with the 2nd elements of the other periods

- Helium moves right until it is aligned with other similar elements such as <u>Ne</u>, <u>Ar</u>, and other <u>noble gasses</u>

- 2nd period we slide B through Ne
- 3rd period we slide <u>Al</u> through <u>Ar</u>

Results of Organization

- <u>7 periods (Across)</u>
 - Atomic Radius decreases
 - Ionization energy increase
 - Electron Affinity increases
- 18 Groups (Down)
 - Atomic Radius increases
 - Ionization energy decreases
 - Electron affinity decreases

- Elements have similar chemical and physical properties

- # of valence electrons are the same

Electronegativity increases Shielding effect is constant _____ Ionization energy increases _____ Electron affinity increases _____ Atomic radius decreases —————

Objectives

- Identify general properties of the metals, non metals, and metalloids.
- Describe how properties of elements change across a period in the periodic table

Download more resources like this on ECOLEBOOKS.COM

How are Elements Classified?

Three Regions

- metals, and nonmetals, and metalloids

Metals

Metals

- include group 1 -12 and some elements from 13 - 16

- most known elements

- good conductors of electricity/heat
- <u>solid</u> at room temperature, except mercury ex. Na, Ag, Pb

Non Metals

Definition

- elements that are poor <u>conductors</u> of electricity/heat

- low boiling points, SO...most are <u>gases</u> at room temperature

- varying <u>chemical</u> properties

ex. <u>He, F, P</u>

Metalloids

Definition

- elements with properties that fall between those of <u>metals</u> and non <u>metals</u>

 chemical properties will <u>vary</u>, usually most like the <u>region</u> they are closer to ex. As: closer to non metal most of it's property will resemble that

Families of the Periodic Table

Families/Groups Alkali metals Alkali Earth metals **Boron Family Carbon Family** Nitrogen Family Oxygen **Transition Metals** Halogens Noble Gases

Alkali Metals

Definition

- highly reactive metallic elements in group 1
- react with water to form hydrogen and alkaline solutions; burn in air
- al-quili means wood ashes
- term dates back to ancient times; people discovered that wood ashes mix with water to produce slippery solutions that can remove grease
- <u>one</u> outer electron, by losing this electron they become a <u>cation</u>, and become stable

Alkali Metals Cont.

- soft metals; can be cut with a knife
- <u>shiny</u>, but dull quickly due to oxygen and water in air
- good conductors
- gaseous states at high temperatures become plasmas

ex. <u>Na, Cs, Rb</u>

Alkali-Earth Metals

Definition

- group 2 elements

- comes from idea of <u>"Earth</u>", materials unable to light on fire

- reactive metallic elements with <u>two</u> electrons in the outermost energy level

- harder, denser, stronger and have higher melting points, lower reactivity than alkali

ex. <u>Be, Ca, Mg</u>

Transition Metals Lanthanides

- shiny, metallic transition metals (58 71) in which electrons are added to 4f orbitals
- located at the bottom of the periodic table for <u>convenience</u>
- Actinides
 - shiny metallic transition metals (90 103) in which electrons are added to 5f orbitals
 - located at the bottom of the periodic table for convenience
 - radioactive

Halogens

Definition

- nonmetallic elements in group 17, that have 7 electrons in the outer most energy level and combines with many metals to form <u>salts</u>

- term comes from Greek means "salt former"

Salt: a compound composed of positive and negative ions arranged in a regular 3D pattern

- most reactive group of nonmetals
- varying physical properties, similar chemical properties

Noble Gas

Definition

- elements in group 18 that are characterized by low reactivity

- term comes from noble people, did not associate with anyone other then their kind

- characterized by an octet of electrons in the outermost energy level; (happy)

- exception of <u>helium</u>

- very stable, (unreactive)
- colorless, odorless

- practical applications: balloons, illumination

Hydrogen

- most common element in the universe
- behaves unlike any other element due to its <u>structure</u> of <u>1 p 1</u> e
- react with numerous elements
- component of all hydrocarbons, and molecules that are essential to life; fats, proteins, carbohydrates
- practical uses

ex. ammonia, fertilizers