
Chemical Reactions and Quantities

Chemical Changes

Balancing Chemical Equations

Physical Properties

- color
- melting point
- boiling point
- electrical conductivity
- specific heat
- density
- state (solid, liquid, or gas)

Physical Change

Changes in physical properties

- melting
- boiling
- condensation

No change occurs in the identity of the substance

Example:

Ice, rain, and steam are all water

Chemical Change

- Atoms in the reactants are rearranged to form one or more different substances
- Old bonds are broken; new bonds form Examples:

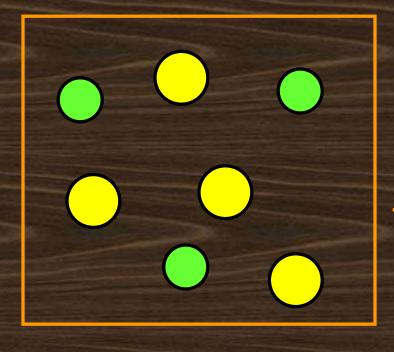
Fe and O₂ form rust (Fe₂O₃)
Ag and S form tarnish (Ag₂S)

Classify each of the following as a

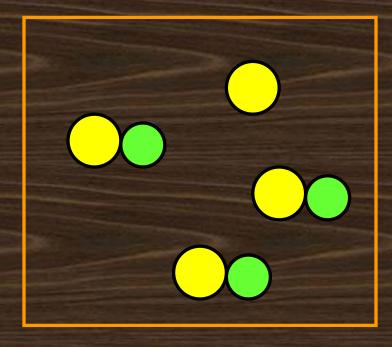
- 1) physical change or 2) chemical change
 - A. ____ a burning candle
 - B. ____ melting ice
 - C. toasting a marshmallow
 - D. ____ cutting a pizza
 - E. polishing silver

Solution E1

Classify each of the following as a


- 1) physical change or 2) chemical change
 - A. 2 a burning candle
 - B. <u>1</u> melting ice
 - C. 2 toasting a marshmallow
 - D. 1 cutting a pizza
 - E. 2 polishing silver

Chemical Reaction


A process in which at least one new substance is produced as a result of chemical change.

A Chemical Reaction

Reactants

Products

- A. How does an equation indicate a change in the identity of the reacting substances?
- B. How did the yellow and green reactants combine?

C. Did all the reactants form product? Why or why not?

- A. How does an equation indicate a change in the identity of the reacting substances?

 The formulas of the reactants are different than the formulas of the products.
- B. How did the yellow and green reactants combine? 1 yellow combined with 1 green.
- C. Did all the reactants form product? Why or why not? No. There were more yellow reactants than green.

Writing a Chemical Equation

Chemical symbols give a "before-and-after" picture of a chemical reaction

Products Reactants

MgO

magnesium oxide to form reacts with carbon

carbon monoxide and magnesium

12 oz of dough, 4 oz mushrooms, 12 slices pepperoni, 8 oz cheese and 5 oz tomato sauce are used to make a pizza. Write a recipe in words for putting together a pizza.

How would you write the recipe as an equation?

Solution E3

Example: Combine 12 oz dough + 4 oz mushrooms + 12 slices pepperoni + 8 oz cheese + 5 oz tomato sauce and heat 30 minutes at 350°C to produce 1 pizza

- 12 oz dough + 4 oz mshrm
- + 12 pep + 8 oz chse 1 pizza
- + 5 oz tom sauce

Reading A Chemical Equation

$$4 \text{ NH}_3 + 5 \text{ O}_2 \longrightarrow 4 \text{ NO} + 6 \text{ H}_2 \text{O}$$

Four molecules of NH₃ react with five molecules O₂ to produce four molecules NO and six molecules of H₂O

or

Four moles NH₃ react with 5 moles O₂ to produce four moles NO and six moles H₂O

A Balanced Chemical Equation

Same numbers of each type of atom on each side of the equation

2AI + 3S
$$\longrightarrow$$
 AI₂S₃ Balanced

Matter Is Conserved

$$H_2$$
 + Cl_2 \longrightarrow 2 HCl

Total atoms
2 H, 2 Cl

=

Total atoms 2H, 2 CI

Total Mass

Total Mass 2(1.0) + 2(35.5)

73.0 g

=

2(36.5)

=

73.0 g

LecturePLUS Timberlake

Law of Conservation of Mass

In any ordinary chemical reaction, matter is not created nor destroyed

Balance Equations with Coefficients

Coefficients in front of formulas balance each type of atom

$$4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$$
 $4NN = 4N$
 $12H = 12H$
 $10O = 10O$

Steps in Balancing An Equation

$$Fe_3O_4 + H_2 \longrightarrow Fe + H_2O$$

Fe:
$$Fe_3O_4 + H_2 \longrightarrow 3 Fe + H_2O$$

O:
$$Fe_3O_4 + H_2 \longrightarrow 3 Fe + 4 H_2O$$

H:
$$Fe_3O_4 + 4H_2 \longrightarrow 3Fe + 4H_2O$$

$$Fe_3O_4 + 4H_2 \longrightarrow 3Fe + 4H_2O$$

- A. Number of H atoms in 4 H₂O
 - 1) 2
- 2) 4

- 3) 8
- B. Number of O atoms in 4 H₂O

 - 1) 2 2) 4

- 3) 8
- C. Number of Fe atoms in Fe₃O₄
 - 1) 1

2) 3

3) 4

Solution E4

$$Fe_3O_4 + 4H_2 \longrightarrow 3Fe + 4H_2O$$

- A. Number of H atoms in 4 H₂O3) 8
- B. Number of O atoms in 4 H₂O2) 4
- C. Number of Fe atoms in Fe₃O₄2) 3

Balance each equation. The coefficients for each equation are read from left to right

$$N_2 \longrightarrow$$

$$Mg_3N_2$$

$$Cl_2 \longrightarrow$$

C.
$$Fe_2O_3 + C$$
 Fe + CO_2
1) 2, 3, 2,3 2) 2, 3, 4, 3 3) 1, 1, 2, 3

D. Al + FeO ____ Fe +
$$Al_2O_3$$

1) 2, 3, 3, 1 2) 2, 1, 1, 1 3) 3, 3, 3, 1

E. Al +
$$H_2SO_4$$
 ____ $Al_2(SO_4)_3$ + H_2
1) 3, 2, 1, 2 2) 2, 3, 1, 3 3) 2, 3, 2, 3

Solution E5

A.
$$3 \text{ Mg} + N_2 \longrightarrow \text{Mg}_3 N_2$$

B.
$$2 \text{ Al} + 3 \text{ Cl}_2 \longrightarrow 2 \text{ AlCl}_3$$

C.
$$2 \operatorname{Fe_2O_3} + 3 \operatorname{C} \longrightarrow 4 \operatorname{Fe} + 3 \operatorname{CO_2}$$

D. 2 Al + 3 FeO
$$\longrightarrow$$
 3 Fe + Al_2O_3

E.
$$2 \text{ Al} + 3 \text{ H}_2 \text{SO}_4$$
 $-- \text{Al}_2 (\text{SO}_4)_3 + 3 \text{ H}_2$