
Chemistry Chapter 7

Chemical Formulas and Chemical Compounds

Heart cell rhythm depends on the opening and closing of a complex series of valves on the cell membrane, called ion channels. Some valves let certain ions ike potassium (K+) flow out, others let different ions like sodium (Na+) flow in. There are also pumps that actively move ions one direction or another.

Ions

Carion: A positive ion

Anion: A negative ion

Lonic Bonding: Force of attraction between oppositely charged ions.

· Mo²7, NH₄*

C-, SO, 2

Predicting Ionic Charges

<u>Group 1</u>: Lose 1 electron to form 1 ions H: Li Na K

1 H 1.00794																	He 4.002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.866	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga @.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 Tl 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	111 (272)	112 (277)		114 (289) (287)		116 (289)		

Predicting Ionic Charges

<u>Group 2</u>: Loses 2 electrons to form 2+ ions Be²⁺ Mg²⁺ Ca²⁺ Sr²⁺ Ba²⁺

1 H 1.00794		_															2 He 4.002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 4.955910	²² Ti 47.867	23 V 50.9415		²⁵ Mn 54.938049	Fe 55.845	CO 58.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga ∞.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	111 (272)	(277)		114 (289) (287)		116 (289)		

Predicting Ionic Charges Group 13: Loses 3 electrons to form ions

1 H 1.00794																	He 4.002602
3 Li 6941	4 Be 9.012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	²² Ti 47.867	23 V 50.9415	24 Cr 51.9961	²⁵ Mn 54.938049	26 Fe 55.845	CO 58.933200	28 Ni 58.6934	²⁹ Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204 3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	112 (277)		114 (289) (287)		116 (289)		

Predicting Ionic Charges Neither! Group 13 elements rarely form ions. <u>Group 14</u>: Lose 4 electrons or gain 4 electrons?

1 H 1.00794		_															He 4.002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 0.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	Ca 40.078	21 Sc 44.955910	²² Ti 47.867	23 V 50.9415	24 Cr 51.9961	²⁵ Mn 54.938049	26 Fe 55.845	CO 58.933200	28 Ni 58.6934	²⁹ Cu _{63.546}	30 Zn 65.39	31 Ga 69.723	Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	82 Pb 207.2	83 Bi 108.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	112 (277)		114 (289) (287)		116 (289)		

Predicting Ionic ChargesNNitridePPhosphideAsArsenide

1 H 1.00794																	He 4.002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.966	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	²⁵ Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga ∞.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	82 Pb 207.2	83 Bi 208 98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	112 (277)		114 (289) (287)		116 (289)		

Predicting Ionic Charges O Oxide S Sulfide Se' Selenide Group 16: Gains 2 electrons to form ions

1 H 1.00794																	He 4.002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	29 Ca 40.078	21 Sc 44.955910	²² Ti 47.867	23 V 50.9415	24 Cr 51.9961	²⁵ Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	²⁹ Cu 63.546	30 Zn 65.39	31 Ga ∞.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)		45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	112 (277)		114 (289) (287)		116 (289)		

ownload	d mor	e re	sour	ces	like	thi	s on	ECOI	'EBOO	KS.C	OM							
	「日本」			Pr	ec	lic	ti	ng	I	on	ic	C	hc	arc	je	5		
F	F	luo	ride			r ¹	Br	rom	ide		Gr	ou		17		Gai	ins	1
C	- <i>C</i>	hlo	rid	2			Io	did	2				trò		to	foi	m	
												i	ons					
	1 H 1.00794 3 Li 6.941 11 Na 22.989770 19 K 39.0983 37 Rb 85.4678 55 CS 132.90545 87 Fr	4 Be 9.012182 12 Mg 24.3050 20 Ca 40.078 38 Sr 87.62 56 Ba 137.327 88 Ra	21 Sc 44.955910 39 Y 88.90585 57 La 138.9055 89 Ac	22 Ti 47.867 91.224 72 Hf 178.49 104 Rf	23 V 58.9415 41 Nb 92.90638 73 Ta 180.9479 105 Db	24 Cr 51.9961 42 Mo 95.94 74 W 183.84 106 So	25 Mn 54.938049 43 Tc (98) 75 Re 186.297 107 Bh	26 Fe 55.845 44 Ru 101.07 76 Os 190.23 108 Hs	27 Co 58.933200 45 Rh 102.90550 77 Ir 192.217 109 Mt	28 Ni 58.6934 46 Pd 106.42 78 Pt 195.078 110	29 Cu 63.546 47 Ag 107.8682 79 Au 196.96655 111	30 Zn 65.39 48 Cd 112.411 80 Hg 200.59 112	5 B 10.811 13 Al 26.981538 31 Ga 69.723 49 In 114.818 81 Tl 204.3833	³² Ge ^{72.61} ⁵⁹ Sn ^{118.710} ⁸² Pb ^{207.2} 114	7 N 14.00674 15 P 30.973761 33 AS 74.92160 51 Sb 121.760 83 Bi 208.98038	8 O 15.9994 16 S 32.866 34 Se 78.96 52 Te 127.60 84 PO (209) 116	9 F 8.998403 17 Cl 35.4527 35 Br 79.904 53 I 126.9044 85 At (210)	² He 4.002602 ¹⁰ Ne 20.1797 ¹⁸ Ar 39.948 ³⁶ Kr ^{83.80} ⁵⁴ Xe 131.29 ⁸⁶ Rn (222)
	FT (223)	(226)	Ac (227)	(261)	DD (262)	Sg (263)	Bn (262)	HS (265)	IVII (266)	(269)	(272)	(277)		(289) (287)		(289)		

Predicting Ionic Charges

<u>Group 18</u>: Stable Noble gases <u>do not</u> form ions!

1 H 1.00794		_															He 4.002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.998403	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	²² Ti 47.867	23 V 50.9415	24 Cr 51.9961	²⁵ Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)		45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.9044	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	111 (272)	112 (277)		114 (289) (287)		116 (289)		

Predicting Ionic Charges Groups 3 - 12: Many Marine elements have more than one possible oxidation state. Iron(II) = Fe⁻⁻⁻ Iron(III) = Fe⁻⁻⁻

1 H 1.00794																	He 4.002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050					V		<u> </u>				13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 4.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mil 54.9380-0	26 Fe 55.845	27 Co 8.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80
37 Rb 85.4678	38 Sr 87.62	39 Y \$8.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 197.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 Tl 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	111 (272)	112 (277)		114 (289) (287)		116 (289)		

Predicting Ionic Charges Groups 3 - 12: Some delements have only one possible oxidation state.

Zinc = Zn²⁺ Silver = Ag

1 H 1.00794																	He 4.002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050					ł						13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 4.955910	²² Ti 47.867	23 V 50.9415	24 Cr 51.9961	²⁵ Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	Cu	30 Zn 65.39	31 Ga 9.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 197.8682	48 Cd 12.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 Tl 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (299)	111 (272)	112 (277)		114 (289) (287)		116 (289)		

Example: Barium nitratie

1. Write the formulas for the cation and anion, including <u>CHARGES</u>!

2. Check to see if charges are balanced.

3. Balance charges , if necessary, using subscripts. Use parentheses if you need more than one of a polyatomic ion.

Example: Annonium sufferie

1. Write the formulas for the cation and anion, including <u>CHARGES</u>!

2. Check to see if charges are balanced.

3. Balance charges , if necessary, using subscripts. Use parentheses if you need more than one of a polyatomic ion. 2

Example: Iron(III) chloride

1. Write the formulas for the cation and anion, including <u>CHARGES</u>!

2. Check to see if charges are balanced.

3. Balance charges , if necessary, using subscripts. Use parentheses if you need more than one of a polyatomic ion.

Example: Aluminum sulfide

1. Write the formulas for the cation and anion, including <u>CHARGES</u>!

2. Check to see if charges are balanced.

3. Balance charges , if necessary, using subscripts. Use parentheses if you need more than one of a polyatomic ion.

Example: Magnesium carbonate

1. Write the formulas for the cation and anion, including <u>CHARGES</u>!

2. Check to see if charges are balanced.

They are balanced!

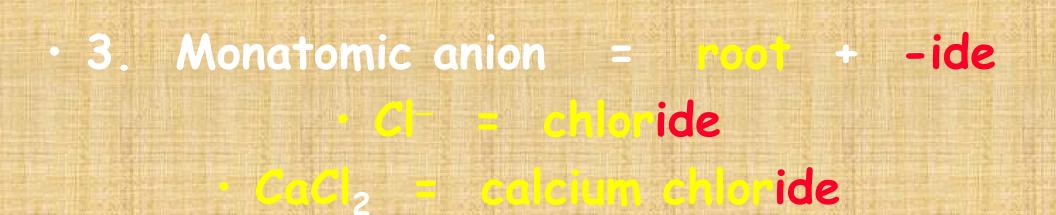
Example: Zinc hydroxide

1. Write the formulas for the cation and anion, including <u>CHARGES</u>!

2. Check to see if charges are balanced.

3. Balance charges , if necessary, using subscripts. Use parentheses if you need more than one of a polyatomic ion.

Example: Aluminum phosphate


1. Write the formulas for the cation and anion, including <u>CHARGES</u>!

2. Check to see if charges are balanced.

They <u>ARE</u> balanced!

Naming Ionic Compounds • 1. Cation first, then anion

 2. Monatomic cation = name of the element

Ca²⁺ = calcium ion

Naming Ionic Compounds (continued)

Metals with multiple oxidation states

- some metal forms more than one callon

- use Roman numeral in name

PbCl₂

Por is cation

• $PbCl_2 = lead(1) chloride$

Naming Binary Compounds

- Compounds between two nonnerals
- First element in the formula is named first.
 - Second element is named as if it were an anion.
- Use prefixes
- Only use mono on second element -
 - P_2O_5 = diphosphorus perioxide
 - CO_2 = carbon dioxide
 - CO = carbon monoxide
 - N_2O = dinitrogen monoxide

<u>Calculating Formula Mass</u>

Calculate the formula mass of magnesium carbonate, $MgCO_3$.

24.31 g + 12.01 g + 3(16.00 g) = 84.32 g

Calculating Percentage Composition

24.31 g + 12.01 g + 3(16.00 g) = 84.32 g

 $C = \begin{bmatrix} 12.0 \\ -100 \\ -14.24\% \\ 84.32 \end{bmatrix} \cdot 100 = 14.24\%$

Calculate the percentage composition of magnesium carbonate, $MgCO_3$.

84,32.)

From previous slide:

Formulas

ratio of atoms in a compound. Molecular formula: the true number of atoms of each element in the formula of a compound.

molecular formula = (empirical formula)_n [n = integer] molecular formula = C₆H₆ = (CH)₆ empirical formula = CH

Formulas (continued)

Formulas for ionic compounds are <u>ALWAYS</u> empirical (lowest whole number ratio).

Examples: NaCl MgCl₂ $Al_2(SO_4)_3$ K_2CO_3

Formulas (continued)

Formulas for molecular competinds <u>MIGHT</u> be empirical (lowest whole number ratio).

Molecular: H_2O $C_6H_{12}O_6$ $C_{12}H_{22}O_{11}$

Empirical: H_2O CH_2O $C_{12}H_{22}O_{11}$

Empirical Formula Determination

- 1. Base calculation on 100 grams of compound.
- 2. Determine moles of each element in 100 grams of compound.
- 3. Divide each value of moles by the smallest of the values.
- 4. Multiply each number by an integer to obtain all whole numbers.

Empirical Formula Determination

6.78 mol H

2.74 mol O

Adipic acid contains 49.32% C, 43.84% O, and 6.85% H by mass. What is the empirical formula of adipic acid?

(16.00 g O

Hydrogena

Empirical Formula Determination (part 2)

Divide each value of moles by the smallest of the values.

2.74 mol O

Oxygen: 2.74 mol O

× 2

Empirical Formula Determination (part 3)

Multiply each number by an integer to obtain all whole numbers.

Empirical formula: C₃H₅O₂

× 2

×

General 1.50 Hydrogens 2.50 Oxygrans 1.00

Finding the Molecular Formula The empirical formula for adipic acid is $C_3H_5O_2$. The molecular mass of adipic acid is 146 g/mol. What is the molecular formula of adipic acid? 1. Find the formula mass of $C_3H_5O_2$

3(12.01.0) + 5(1.01) + 2(16.00) + 73.08.9

Finding the Molecular Formula The empirical formula for adipic acid is $C_3H_5O_2$. The molecular mass of adipic acid is 146 g/mol. What is the molecular formula of adipic acid? 2. Divide the molecular mass by the mass given by the emipirical formula.

3(12.01) = 5(1.01) = 2(16.00) = 73.08 e

Finding the Molecular Formula The empirical formula for adipic acid is $C_3H_5O_2$. The molecular mass of adipic acid is 146 g/mol. What is the molecular formula of adipic acid? 3. Multiply the empirical formula by this

number to get the molecular formula.

3(12.01.9) + 5(1.01) + 2(16.00) = 73.08.9

$(C_3H_5O_2) \times 2$