Chemistry Chapter 7

Chemical Formulas and
Chemical compounds $\xrightarrow[\oplus \oplus+]{\mathrm{Na+}}$

Heart cell mythm depends on the opening and closing of a complex series of valves on the cell membrane, called ion channels. Some valves let certain ions the potassium ($\mathrm{K}+$) flow out, othens let different ions the sodium (Nat) flow in. There are also pumps that actively move ions one direction or another.
 \section*{Ions
 \section*{Ions

 Cation：A positive ion

 Cation：A positive ion ？ ？
}
}

Anion：A negative ion

Tonic Bonding：Force of attraction
Ah an：

Force of attraction

A negative ion

\square
\square
 Tyrone： 41 4） ． ＂18
\qquad
\qquad
\qquad
$\frac{42}{1-2!}$
\qquad
\qquad
\qquad

－

． \qquad
$\frac{51}{21}$
$=$ $+$

Predicting Ponic Charges

Predicting Ponic Charges

Group 2: Loses 2 electrons to form

$\stackrel{\stackrel{1}{\mathrm{H}}}{1.0074}$																	$\stackrel{2}{\mathrm{He}}$
3												${ }_{5}^{5}$	${ }^{6}$	${ }^{7}$	$\stackrel{8}{8}$	$\stackrel{ }{ }$	10
Li	Be											B	C	N	O	F	Ne
6941	9.812182											10.811	12.0107	14.0067	15.9594	18.998403.	20.1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.989770	24.3050											26.981588	28.8855	30973761	32.066	35.4527	30.948
19	${ }^{20}$	21	22.	${ }^{23}$	${ }^{24}$	25	${ }^{26}$	27	${ }^{28}$	${ }^{29}$	36	${ }^{31}$	32	${ }^{33}$	34	${ }^{35}$	${ }^{36}$
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,998	40.078	4955910	47.867	50.9415	519961	54.93804	55845	58.933200	58.0034	63.546	65.39	69.723	72.61	74.92100	78.96	79.504	81.80
37	${ }^{38}$	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	8.90585	91.224	92.90638	95.94	(98)	101.07	102.50550	106.42	107.8682	112.411	114.818	118.710	121760	127.60	126.9047	131.29
55	56	57	72	73	74	75	76	77	${ }^{78}$	79	${ }^{86}$	${ }^{81}$	${ }^{82}$	83	${ }^{84}$	85	${ }^{86}$
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	PO_{0}	At	Rn
13290545	137.327	138.9055	178.49	180.9479	183.84	186.207	150.23	192.217	195.078	196.96655	200.59	2043833	207.2	208.58038	(209)	(210)	(222)
87	${ }^{88}$	${ }^{89}$	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	(226)	(227)	(261)	(262)	(2ai)	(262)	(265)	(266)	(209)	(272)	(277)		($\begin{aligned} & (289) \\ & (287)\end{aligned}$		(289)		

Predicting Lonic Charges

Group 13: Loses 3 elections to form

$\begin{array}{\|c} \stackrel{1}{\mathrm{H}} \\ 1,0074 \end{array}$																	He 4,002602
3	4											5	6	7	${ }^{8}$	9	10
Li	Be											B	C	N	O	F	Ne
6941	9.812182											10.811	12.0107	14.00674	15.5994	18.998483:	20.1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.989770	24.3050											26.981588	28.0855	30973761	32.866	35.4527	39.948
19	20	21	22	${ }^{23}$	${ }^{24}$	25	26	27	${ }^{28}$	${ }^{29}$	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,9983	40.078	44.959910	47.867	50.9415	51.9961	54.93804	55845	58.933200	58.6834	63.546	65.39	9.723	72.61	74.92100	78.96	79.504	81.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.90585	91.224	92.90638	95.94	(98)	101.07	102.50550	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	1259044	131.29
55	56	57	72	73	74	75	76	77	${ }^{78}$	${ }^{79}$	${ }^{80}$	${ }^{81}$	82	${ }^{83}$	${ }^{84}$	85	${ }^{86}$
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	PO	At	Rn
132.9054	137.327	138.9055	178.49	180.9479	183.84	186.207	150.23	192.217	195.078	196.96655	200.59	2042883	207.2	208.58038	(209)	(210)	(222)
87	${ }^{88}$	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	(226)	(227)	(261)	(262)	(2ai)	(262)	(265)	(266)	(209)	(272)	(277)		(287)		(289)		

$\begin{gathered} 1 \\ \mathrm{H} \\ 1.00794 \end{gathered}$																	
$\mathrm{L}_{6.941}^{3}$	4 Be 9.012182											5 B 10.811	$\stackrel{6}{C}_{12.0107}^{C}$		$\begin{gathered} 8 \\ 0 \\ 15.9994 \end{gathered}$	9 F 18.998403.	10 Ne 20.1797${ }_{2}$
11 Na 22.989770	$\mathrm{M}_{24.3050}^{12} \mathrm{~g}_{2}$											13 Al 26.981538	$\begin{gathered} 14 \\ \mathrm{Si} \\ 28.0855 \end{gathered}$	15 P 30973761	$\stackrel{16}{S}_{\substack{16.066}}$	$\begin{gathered} 17 \\ C_{35.4527} \end{gathered}$	$\begin{gathered} 18 \\ \mathrm{Ar} \\ 39.948 \\ \hline \end{gathered}$
K_{39}^{19}	$\begin{gathered} 20 \\ C_{a}^{20.078} \end{gathered}$	$\underset{44.955910}{21}$	$T_{47.867}^{22} \mathrm{i}$	$\begin{gathered} 23 \\ \mathrm{~V} \\ 50.9415 \end{gathered}$	${ }_{51.9961}^{24}$	$\begin{array}{\|c\|} \hline 25 \\ \mathrm{Mn} \\ 54.938049 \\ \hline \end{array}$	$\begin{gathered} 26 \\ \mathrm{Fe} \\ 55.845 \end{gathered}$	$\stackrel{27}{\mathrm{Co}}_{58.933200}$	$\stackrel{28}{\mathrm{Ni}}$	$\stackrel{C u}{63.546}_{29}$	$\begin{gathered} 30 \\ 7 n \\ 65.39 \end{gathered}$	$\begin{gathered} 31 \\ \mathrm{Ca} \\ 69.723 \end{gathered}$	$\stackrel{32}{\mathrm{Ge}}$	$\begin{array}{\|c} \hline 33 \\ \mathrm{AS} \\ 74.92100 \end{array}$	$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \end{gathered}$	$\stackrel{35}{\mathrm{Br}}$	$\underset{83.80}{\mathrm{Kr}^{36}}$
$\begin{aligned} & 37 \\ & \mathrm{Rb} \\ & 85.4678 \end{aligned}$	$\begin{gathered} 38 \\ \mathrm{Si} \\ 87.62 \end{gathered}$	$\frac{39}{\mathrm{Y}}$	$\begin{gathered} 40 \\ 71.224 \end{gathered}$	$\stackrel{41}{\mathrm{Nb}}$	$\stackrel{42}{\mathrm{MO}}$	$\begin{gathered} 43 \\ \mathrm{TC} \\ \hline(98) \end{gathered}$	$\begin{gathered} 44 \\ \mathrm{Ru} \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathrm{Rh} \\ 102.90550 \end{gathered}$	$\begin{gathered} 46 \\ \mathrm{Pd} \\ 106.42 \end{gathered}$	$\begin{gathered} 47 \\ \mathrm{~A} \mathrm{G} \\ 107.8682 \end{gathered}$	$\stackrel{48}{\mathrm{Cd}_{112.411}}$	$\operatorname{In}_{114.818}^{49}$	$\begin{gathered} 50 \\ \mathrm{Sn} \\ 118.710 \end{gathered}$	$\begin{gathered} 51 \\ \mathrm{Sb} \\ 121.760 \end{gathered}$	$\begin{gathered} 52 \\ T \mathrm{e} \\ 127.60 \end{gathered}$		$\begin{gathered} \mathrm{Se}^{54} \\ 131.29 \end{gathered}$
$\begin{gathered} 55 \\ \mathrm{CS} \\ 132.90545 \end{gathered}$	$\begin{gathered} 56 \\ \mathrm{Ba} \\ 137.327 \end{gathered}$	$L_{138.9055}^{57}$	$\mathrm{Hf}_{178.49}^{72}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.9479 \end{gathered}$	$\begin{gathered} 74 \\ \mathrm{~W} \\ 183.84 \end{gathered}$	75 Re 186.207	$\begin{gathered} \hline 76 \\ \mathrm{O} \\ 150.23 \end{gathered}$	$\begin{gathered} 77 \\ \mathrm{Ir} \\ 192.217 \end{gathered}$	$\begin{gathered} 78 \\ \mathrm{Pt} \\ 195.078 \end{gathered}$	$\begin{gathered} \hline 79 \\ \mathrm{Au} \\ 196.96655 \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.59 \end{gathered}$	81 T1 204.3833	$\begin{gathered} 82 \\ \mathrm{~Pb} \\ 207.2 \end{gathered}$		$\begin{gathered} 84 \\ \mathrm{PO} \\ (209) \end{gathered}$	85 At (210)	$\begin{gathered} 86 \\ \mathrm{Rn} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathrm{Fr} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Ra} \\ (226) \end{gathered}$	$\begin{gathered} 89 \\ \mathrm{~A} \mathrm{C} \\ (227) \end{gathered}$	$\begin{gathered} 104 \\ \mathrm{Rf} \\ (261) \end{gathered}$	$\begin{gathered} 105 \\ D \mathrm{D} \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{So} \\ (263) \end{gathered}$	$\begin{gathered} 107 \\ \mathrm{Bh} \\ (262) \end{gathered}$	$\begin{gathered} 108 \\ \mathrm{HS} \\ (265) \end{gathered}$	108 Mt (266)	$\begin{aligned} & 110 \\ & (2099) \end{aligned}$	111 (272)	$\begin{array}{r} 112 \\ (277) \\ \hline \end{array}$		$\begin{gathered} 114 \\ (285) \\ (287) \end{gathered}$		$\begin{gathered} 116 \\ (289) \end{gathered}$		

Group 16: Gains 2 electrons to form

Group 18：Stable Noble gases do not form ions．

H													Hic	
${ }_{\text {Be }}$									B		N	¢		Ne
${ }^{\text {M }}$									A		${ }^{\text {P }}$	5		
足盛	\％			，			部		${ }^{\text {cin }}$	d	is			
为 ${ }_{\text {cher }}$	\％	${ }^{\circ} \mathrm{A}$	${ }^{\text {bib }}$	${ }^{\text {it }}$	${ }_{\text {Rum }}^{\text {R }}$	${ }_{\text {kn }}$	${ }_{\text {pad }}^{\text {pad }}$		${ }^{\text {in }}$		so			
${ }_{6}^{6}$ \％	${ }^{\text {La }}$	${ }^{\text {if }}$	\％	${ }_{\text {Re }}$	os	${ }^{\text {r }}$	${ }^{\text {p }}$	4	\＃1		${ }^{\text {B }}$			${ }_{\text {Rn }}^{\text {m }}$

Groups 3-12: Many
 elements have more than one possible oxidation state.

$\stackrel{1}{\mathrm{H}}$																	$\stackrel{2}{\mathrm{He}}$
Li_{6941}^{3}	$\begin{gathered} 4 \\ \mathrm{Be}_{9.012182} \end{gathered}$											$\begin{array}{\|c\|} \hline 5 \\ \mathrm{~B} \\ 10.811 \end{array}$	$\stackrel{6}{\mathrm{C}}{ }_{12.0107}$	$\stackrel{7}{\mathrm{~N}}$	$\stackrel{8}{\stackrel{8}{\mathrm{O}}}$		$\begin{array}{\|l\|} \hline 10 \\ \mathrm{Ne} \\ 20.1797 \end{array}$
$\begin{gathered} 11 \\ \mathrm{Na}_{22.98970} \end{gathered}$	${\underset{24}{12} \mathrm{Mg}_{2}^{12}}^{2}$					1						$\stackrel{13}{\mathrm{~A}_{26}^{\mathrm{Al}} 15158}$	$\underset{28.0855}{14}$		$\mathrm{S}_{32.066}^{16}$	$\begin{gathered} 17 \\ { }_{35.4527}^{\mathrm{Cl}} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 18 \\ \mathrm{Ar} \\ 39948 \end{array}$
$\begin{array}{\|c} 19 \\ \mathrm{~K}_{3}^{19} 983 \end{array}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \\ & 40.078 \end{aligned}$	$\stackrel{21}{21}_{\mathrm{SC}_{495910}}$	${\underset{47.867}{22}}_{22}$	$\stackrel{23}{\mathrm{~V}}$	$\stackrel{24}{\mathrm{Cr}_{519961}}$		$\begin{gathered} 26 \\ { }_{55}^{26} 845 \end{gathered}$	$\mathrm{C}_{8.933200}^{27}$	$\stackrel{28}{28.0834}_{28}$	$\begin{gathered} \hline 29 \\ \mathrm{Cu} \\ \mathrm{C}, 546 \end{gathered}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} 5.39 \end{aligned}$	$\begin{gathered} { }_{c}^{31} \\ \mathrm{Ga} \\ \hline 9.723 \end{gathered}$	$\begin{aligned} & 32 \\ & \mathrm{G} \end{aligned}$	$\mathrm{T}_{7492160}^{\mathrm{A3}}$	$\begin{aligned} & 34 \\ & { }_{7}^{3.96} \end{aligned}$	$\begin{gathered} \hline \frac{35}{35} \\ 79.94 \end{gathered}$	$\begin{aligned} & \text { 36 } \\ & \mathrm{Kr} \\ & 83 \end{aligned}$
$\begin{gathered} 37 \\ \mathrm{Rb}_{85}{ }^{2} 678 \end{gathered}$	$\begin{array}{\|c} \hline 38 \\ { }_{87.62}^{38} \end{array}$		$\begin{aligned} & \mathrm{Zr}_{91.224}^{40} \end{aligned}$	$\stackrel{41}{\mathrm{Ni}}{ }_{92.9638}$	$\begin{aligned} & \mathrm{M}_{9594}^{42} \end{aligned}$	$\begin{aligned} & \begin{array}{l} 43 \\ \mathrm{Tc} \\ (98) \end{array} \end{aligned}$	$\underset{101.07}{\mathrm{Ru}}$	45 Rh 102.50550	$\begin{aligned} & \hline 46 \\ & \mathrm{Pd} \\ & 106.42 \end{aligned}$	$\underset{107.8622}{47}$	$\stackrel{48}{\mathrm{Cd}_{112.411}}$	$\operatorname{In}_{114.818}^{49}$	${\underset{118}{50} \mathrm{Sn}_{10}}^{2}$	$\begin{gathered} \mathrm{S}_{121.760}^{51} \end{gathered}$	$\begin{gathered} \mathrm{Te}_{127.60}^{52} \end{gathered}$		$\begin{array}{\|c} \hline \begin{array}{c} 54 \\ \mathrm{Xe} \\ 131.29 \end{array} \\ \hline \end{array}$
55	56	57	72	73	74	75	76	77	${ }^{78}$	79	80	81	82	83	84	85	${ }^{86}$
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
13290545	137.327	138.9055	178.49	180.9479	183.84	186.207	150.23	192.217	195.078	196.96655	200.59	2043833	207.2	208.58038	(209)	(210)	(222)
$\begin{aligned} & 87 \\ & \mathrm{Fr}_{223} \end{aligned}$	$\begin{aligned} & 88 \\ & \text { Ra } \\ & \text { R2 } \end{aligned}$	$\begin{aligned} & \mathrm{B9} \\ & \mathrm{Ac} \\ & (227) \end{aligned}$	$\begin{gathered} 104 \\ \mathrm{Rf} \\ (261) \end{gathered}$	$\begin{aligned} & \text { 1 } \\ & \text { Db } \\ & (262) \end{aligned}$	$\begin{aligned} & 106 \\ & \mathrm{Sg} \\ & 20 \end{aligned}$	$\begin{aligned} & \mathbf{c}^{107} \\ & { }_{(2622} \end{aligned}$	$\begin{aligned} & \text { 108 } \\ & \text { Hs } \\ & (265) \end{aligned}$	$\begin{aligned} & 109 \\ & \mathrm{Mt} \end{aligned}$	110 (209)	$\begin{aligned} & \hline 111 \\ & (272) \end{aligned}$	$\begin{aligned} & 112 \\ & \text { (277) } \end{aligned}$		114 (289) (287)		$\begin{gathered} 116 \\ (289) \end{gathered}$		

Precicting Ionic Charges Groups 3 - 12: Some transition elements have only ont possible oxidation state.

												,
Be								B		'	¢	\%
${ }^{\text {Na }}$										P		
	\%		P	${ }^{\text {an }}$			Nin ${ }^{8}$			is	se	kim
$\stackrel{\text { kib }}{ }$	\%	${ }^{4}$	Nib	${ }_{\text {Bio }}{ }^{\text {Io }}$	${ }_{\text {Run }}^{\text {Rn }}$	${ }^{\text {Rn }}$	Br ${ }^{\circ}$			sb	${ }_{10}$	
${ }^{\circ}$	La	${ }_{\text {it }}$	S	${ }^{*}$	${ }_{\text {os }}$	ir	${ }_{\text {prem }}$	\#1		Bi		

Writing Ionic compound formulas

Example:

1. Write the formulas for the cation and anion, including CHARCES:
2. Check to see if charges are balanced.
3. Balance charges, if necessary, using subscripts. Use parentheses if you need more than one of a
E.ntum hate
 By+ in
 2 monty 6

\qquad

\qquad 8 Ti
\qquad if you

\qquad

Writing Ionic Compound Formulas

Example:

1. Write the formulas for the cation and anion, including CHAREES: are balanced.
2. Balance charges, if necessary,
using
3. Balance charges, if necessary,
using
if you need mope than one of a
 $\frac{7 y}{2+5}=$

Not balanced!

\qquad
\qquad

$$
\operatorname{men}
$$ re

 rit

(1)

踥

些
\square
\square
\qquad S. Use parentheses
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Writing Ionic Compound Formulas

Example: Tron(- TI) chloride
 Example: Tron ($1+1$) chlorite

1. White the formulas for the cation and anion, including CHARGES.
2. Check to see if charges are balanced.
3. Balance charges, if necessary, using subscripts. Use parentheses
s. if you need mope than one of a

Not balanced!

What
In
 ($-\sqrt{4}$

$$
\frac{415}{5-1}+
$$ - 16

\qquad亲析 \qquad

+ a.
\qquad
\qquad 1) \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Writing Ionic Compound Formulas

Example:

1. Write the formulas for the cation and anion, including CHARGES.
2. Check to see if charges are balanced.
3. Bolance-changes, if necessary. using sibberripis. Use parentheses

Arommun sulfite
if you need more than one of a
\qquad

Not balanced!

$73+5$ 40^{2} 5 1 billy dotimetras. $\square \square \square$
 1/2 tina 81 \qquad S. Use parentheses
\square $-$

Writing Fonic Compound Formulas

Example:

1. Write the formulas for the cation and arion, including CHARGES:
2. Check to see if charges are balanced.

1

They are balanced!

Writing Ionic Compound Formulas

 Writing Ionic CompoundExample: Z ne hydroxide

1. Write the formulas for the cation Writing Ionic Compound
Example: Z ne hydroxide
2. Write the formulas for the cation and anion, including CHAREES!
3. Check to see if chargesuare balanced.
4. Balance charges, if necessary, using subscripts. Use parentheses Mncitanc ionic conn porno
Example: White the formulas for the cation if you end moke mon of
 morereutaliverola.

$2{ }^{2}$

\square

\qquad 3吾雾?
\qquad
\qquad
 (1)
\qquad
\qquad

Writing Ionic Compound Formulas

Example:

1. Write the formulas for the cation and anion, including CHAREES:
2. Check to see if charges are balanced.

|

They ARE balanced! Naming Ionic Compounds

- 1. Cation first, then anion

that realeilinion

-3. Monatomic anion $=$ not + -ide

ide

$$
18 \mathrm{a}
$$ 3. Monatomic anion

 Cl_{2}

a de

 $=$w hor

$$
1
$$

-2 Monatomic cation - =name of the
 element

 $=$:\qquad
 \section*{\section*{Naming Ionic Compounds
 \section*{\section*{Naming Ionic Compounds

 (continued)}

 (continued)}

Metals with multiple oxidation states
 - Hit some metal forms more than one cation
 - - use Roman numeral in name

$\because: \mathrm{PbCl}_{2}=\mathrm{lead}(\mathrm{H})$) chloride

$\cdot \mathrm{PbCl}_{2}$
 Pb 2 is cation

 $P^{2}+$ is cation

 $P^{2}+$ is cation

\square
\qquad
\square $\frac{21}{25}$
\qquad

$$
89
$$

\qquad

\qquad

Naming Binary Compounds
Compounds between two nay metals
-

- Serendedemerti is named as if it were on cinder.
- Use prefixes
- Only use ninon on second element -

$$
\begin{aligned}
\mathrm{P}_{2} \mathrm{O}_{5} & =\text { ephosphorus } \\
\mathrm{CO}_{2} & =\text { carbon oxide } \\
\mathrm{CO} & =\text { carbon monoxide } \\
\mathrm{N}_{2} & =\text { initrogen }
\end{aligned}
$$

Galculatina Formula Mass

calculate the formula mass of magnesium carbonate, MgCO_{3}.

Calculating Percentage Composition
Calculate the percentage composition of magnesium carbonate, MgCO_{3}.
From previous slide:

$$
\begin{aligned}
& \left.M g=\frac{243}{843 \%}\right)+100=28.83 \% \\
& \frac{120.020}{84.32}-300=30
\end{aligned}
$$

Formulas
 Empirical formula: the lowest whole number ratio of atoms in a compound. atoms of each element in the formula of a atoms of each element in the formula of a compound.
 ucla: the lowest whole number

 \qquad
 \qquad
 䟮 amber of

$$
\begin{aligned}
& \text { molecular formula }=\text { (empirical } \\
& \text { formula) } n=\text { integer } \\
& \text { molecular formula }=C_{6} H_{6}=(\mathrm{CH})_{6} \\
& \text { empirical formula }=\mathrm{CH}_{6}
\end{aligned}
$$ 8

8
8
8

1
\square 14
$2-$
\qquad
\square
\square $\frac{1}{1}$

$$
\frac{F}{5}
$$

\square w (tit
\qquad (+1) 4 E- 7 -

2

4
\qquad
\qquad
\qquad
\qquad
\qquad
" $1=$ le
\qquad
\qquad
\qquad
.

Formulas（continued）
Formulas for montane resources 1 ike this on Ecourbooks．com
empirical（lowest whole number ratio）．
Examples：
$\mathrm{NaCl} \quad \mathrm{MgCl}_{2} \quad \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \quad \mathrm{~K}_{2} \mathrm{CO}_{3}$
mulls for went whole number ratio）．
irical（lowest ways
dimples：
Cl_{1}
MOCl_{2} $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \quad \mathrm{~K}_{2} \mathrm{CO}_{3}$ are ALWAYS
ben ratio）． 24
24
810 －2 4
Tl
\qquad
\qquad
\square
sifitive

Formulas（continued）
Formulas for ionise resources 1 ike this on Ecorebooss．com
empirical（lowest whole number ratio）．
Examples：
$\mathrm{NaCl} \quad \mathrm{MgCl}_{2} \quad \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{5} \quad \mathrm{~K}_{2} \mathrm{CO}$
mulls（continued）
mulls for on con
irical（lowest whole number ratio）．
implies：
$\mathrm{Cl} \mathrm{MgCl}_{2} \quad \mathrm{Al}_{2}\left(\mathrm{SO}_{4} 7_{5} \quad \mathrm{Kinin}_{2} \mathrm{CCO}_{2}\right.$
mulls（continued）
mulls for conf eon ponds are ALWAYS
irical（lowest whole number ratio）．
imples： $\mathrm{MgCl}_{2} \quad \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{5} \quad \mathrm{~K}_{2} \mathrm{CO}_{3}$

ownload more resources like this on ECOLEBOOKS．COM
$+$
\qquad

\qquad
resources like this on ECOLEBOOKS．COM
mulls（continued）
mulls for on con
irical（lowest whole number ratio）．
implies：
$\mathrm{CoCl}_{2} \quad \mathrm{Al}_{2}\left(\mathrm{SO}_{4} \mathrm{P}_{5} \quad \mathrm{Kinin}_{2} \mathrm{CCO}_{8}\right.$

\qquad

\qquad

\qquad
\qquad
mf

Formulas (continued)
Formulas for molectlan compoulds MIGHI be empirical (lowest whole number ratio).
$\begin{array}{lccc}\text { Lolgeular } & \mathrm{H}_{2} \mathrm{O} & \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} & \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \\ \text { Enpirical } & \mathrm{H}_{2} \mathrm{O} & \mathrm{CH}_{2} \mathrm{O} & \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\end{array}$

Empirical Formula Determination

$$
1
$$

1. Base calculation on $\mathbf{1 0 0}$ grams of compound.
2. Determine moles of each element in 100
3. Divide each value of moles by the smallest of the values.
4. Multiply each number by an integer to obtain all whole numbers. Hit it \square all. who \#

\qquad $1+84$
$4+24$
4 48
4 ti
$4+12$
$4-2$浐 \square 4 21
\qquad 1
$+\square+1$

grams of compound. 4 4-4 \qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\square范 \square \qquad
\qquad
\qquad
\qquad $+\frac{1}{5}$ $\frac{5}{4}+$

Empirical Formula Determination

Adipic acid contains 49.32% C, 43.84% 0, and 6.85% He mass. What is the empirical formula of adipic acid?

Empirical Formula Determination (pant 2)

Divide each value of moles by the smallest of the values.

$$
\frac{40 \mathrm{molog}}{2.74 \mathrm{molog}}
$$

2.74
m

1
 Carbon
\square

Download more resources like this on ECOLEBOOKS.COM
Download more resources like this on ECOLEBOOKS.COM

coteries

\qquad

$$
\begin{array}{r}
3.2 .0 \\
1.46
\end{array}
$$ 12 (9) ar (0)

Finding the Molecular Formula

The empirical formula for adipic acid is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$. The molecular mass of adipic acid is 146 g hot. What is the indecular formula of adipic acid?
3. Multiply the empirical formula by this number to get the molecular formula.

$$
\left(C_{3} H_{5} \Theta_{2}\right) \times 2
$$

