Hormones and Feedback Mechanisms 03.01.05

How the endocrine system controls everything

The Endocrine System

- I. General Overview
- II. Basic Anatomy
- III. Control of the endocrine system
- IV. Specific endocrine events

I. A General Overview

- ES (endocrine system) and homeostasis
- Anatomy
 - Endocrine glands, cells, neurosecretory cells
 - Hormones
 - Target cells
- ES as a Control System
 - Hormone + target = change in cell function (return to homeostasis)

ES and Homeostasis

• Homeostasis

Feedback Mechanisms

- Stimulus
 - change in homeostatic environment
 - signal sent to CNS
- Response
 - signal sent from CNS
 - produce effect
 - body returns to homeostasis

Basic ES cont.

- ES and NS = 2 main control systems of body
- Endocrine organs located throughout body
- Actions mediate all tissues
- Control of ES through feedback mechanisms

II. ES anatomy basics

- A. Exocrine gland
 - Ducts
 - Lumen and surfaces
- **B. Endocrine gland**
 - Chemical messengers
 - Blood stream

C. Hormones

C. 4 Classes of Hormones

- 1. Peptide/ Protein
- 2. Steroid
- 3. Amine
- 4. Eicosanoid

Hormone + Receptor

Protein/Peptide Hormones

- Hydrophilic
- Large
- Can't fit through membrane
- Second messenger mechanism of action
- Most hormones
- Example: Insulin

Steroid Hormones

- Small
- Hydrophobic/Lipophilic
- Travel in blood w/carrier
- Cytoplasmic or nuclear receptors
- change protein synthesis
- Example: estradiol

Amine

- Synthesized from a single amino acid
- Melatonin from tryptophan
- Thyroid hormone from tyrosine
- Catecholamines (EPI, DA) from tyrosine

Epinephrine (an amine)

Eicosanoid

- Produced from 20carbon fatty acid, arachadonic acid
- Produced in all cells except RBCs
- 2nd messenger
- Prostaglandins and leukotrienes
- inflammation

Hormone + Receptor

Where are Hormones Made?

The H-P-A Hypothalamic-Pituitary Axis

- Most feedback loops run through this axis
- HPA mediates growth, metabolism, stress response, reproduction.
- is secondarily in charge of almost everything else.

p. 503

D. Neurosecretory Cells

- 1. Specialized neurons
 - Synthesize and secrete hormones
- Extend from
 HYPOTHALAMUS
 to POSTERIOR
 PITUITARY

2. Neurosecretory cells in Hypothalamus

- Nuclei synthesize and secrete hormones
- Neuronal connection to POSTERIOR pituitary
- Antidiuretic Hormone (ADH), Oxytocin

E. Hypothalamus (general)

- Connection to pituitary
 - Neuronal toPOSTERIORPITUITARY
 - Endocrine toANTERIORPITUITARY
 - RH = Pituitary releasing hormones
 - RIH = Pituitary release inhibiting hormones

Why is the Hypothalamus so Important?

- Secretes regulatory homones
 - RH
 - RIH
- "Directs" pituitary

Hypothalamic Hormomes

- Release Inhibiting Hormones
 - Somatostatin
 - Prolactin release inhibiting hormone-PIH
- Releasing Hormones
 - Thyrotropin releasing hormone-TRH
 - Growth hormone releasing hormone-GHRH

1. Posterior Pituitary Hormones

- Manufactured in Hypothalamus, released from Post. Pit.
- Oxytocin
 - Target = smooth ms. Uterus and Breast (&brain)
 - Function = labor and delivery, milk ejection,(pair bonding)
- ADH (Vasopressin AVP)
 - Target = kidneys
 - Function = water reabsorption

How about in frogs?

- Hormone structure/function tightly conserved
- Mesotocin
 - yolking of eggs
 - egg-laying
- Vasotocin (AVT)
 - water balance
 - REPRODUCTIVE BEHAVIORS

E. Pituitary gland

MASTER GLAND

- Anterior and posterior portions
- 1. Posterior connected to hypothalamus by infundibulum
- 2. Anterior connected via blood stream

2. Anterior Pituitary Hormones

HORMONE	TARGET	FUNCTION
Thyroid (TSH) Stimulating	Thyroid gland	TH synthesis & release
Growth (GH)	Many tissues	growth
Adrenocortico- Tropin (ACTH)	Adrenal cortex	Cortisol release (androgens)
Prolactin (Prl)	Breast	Milk production
Follicle (FSH)	Gonads	Egg/sperm prod.
Luteinizing (LH)	Gonads	Sex hormones

Hormones To Study

- Hypothalamic Hormones
- Posterior Pituitary (Neurohypophysis)
- Anterior Pituitary (Adenohypophysis)
 - Thyroid
 - Growth
 - Sex Steroid

III.Control of Endocrine Function

- A. Positive P. or Norati
- B. or Negative Feedback mechanisms
- Self-regulating system

STIMULUS Hypothalamus Releasing Hormone (Release-Inhibiting Hormone) **Pituitary Stimulating Hormone** Gland ► Target Hormone

A. Positive Feedback

- Not common
- Classic example: Action of OXYTOCIN on uterine muscle during birth.

Positive Feedback

- Baby pushes on cervix
- Nervous signal to Hypothalamus
- Hypothal. manufactures OXY
- OXY transported to POSTERIOR PITUITARY & released
- OXY stimulates uterine contraction
- Loop stops when baby leaves birth canal

Same with frogs?

B. Negative Feedback

- Most common control mechanism
- Level of hormone in blood or body's return to homeostasis shuts off loop at hypothalamus and pituitary

Negative Feedback: Thyroid

Basic Structure of Feedback Loop

- Environmental Stimulus
- Stimulates Control Center (Brain-hypothal.)
- Hypothalamic hormones stim. Pituitary
- Pituitary hormone stim. Target area
- Target area produces change
- Change acts negatively or positively on the cycle.

IV. Specific Endocrine Events

- A. Thyroid Hormone
- B. Growth Hormone
- C. Adrenal Cortex Hormones
- D. Sex Steroids

A. Thyroid Hormone

- ↓ T3 & T4 stim. Or environmental stim. Hypothalamus
- TRH stim. Anterior Pituitary
- TSH stim. Thyroid
- T3 & T4 shuts off TRH and TSH production

metabolism and growth

Thyroid Problems

- What would happen if the thyroid could no longer produce T3 and T4?
- No negative feedback to hypothalamus and anterior pituitary

- $T_3 = Triiodothyronine$
- $T_4 = Thyroxine$ (Tetraiodothyronine)

Goiter

Hypersecretion of TSH or TH

(b) Exophthalmos

(c) Goiter

Hyposecretion of TH

B. Growth Hormone

- Stimulus = Tissue growth/ repair
- Hypothalamus releases GHRH
- Anterior Pituitary releases GH
- ↑ Protein synthesis, growth, etc.
- [†]GH and release of somatostatin shuts off GHRH and GH release

What happens with excess GH?

↑GH as Juvenile

↑GH as an Adult

How Does Hypersecretion of GH Happen?

\downarrow GH = pituitary dwarfism

Adrenal Gland

- Adrenal gland located atop kidney
- Outer part = cortex
 - Secretes Cortisol (stress), Androgens, Aldosterone (electrolytes)
- Inner part = medulla
 - SNS control
 - Secretes EPI & NEPI (fight or flight)

Adrenal Insufficiency

- Addison's disease--hyposecretion of cortisol
- JFK
- Darkened skin (ACTH mimics MSH)
- Weight loss, hypoglycemia
- Find the anomaly in the feedback loop.
- Inability to handle stress

4. Sex Steroids

- Stimulus = low circulating T or E
- Hypothalamus = GnRH
- Anterior Pituitary = FSH & LH
- Gonads produce T and E
- High T and E shut off GnRH and FSH/LH

Importance

- Reproduction/Mating Behavior (duh)
- Formation of reproductive organs
 - gonads
 - brain

Too many steroids

Invertebrates

- Hormones involved in:
 - Molting
 - Pupation
 - Metamorphosis

Insect Hormones

• Juvenile Hormone

- maintains juvenile cuticle for pre-adulthood molts
- secreted by corpus allatum near brain
- Ecdysone
 - Molting Hormone
 - Prothoracic Glands (in thorax of insect)
 - PTTH = Brain hormone that stimulates
 Prothoracic Glands

Juvenile Hormone

p.523

Points

- History
- Anatomy
- Terms
- Hormones
- Feedback control
- Specific Points discussed

I. Endocrine History

- Claude Bernard (mid 1800s)
 - pancreas, liver
 - brain, smooth ms.
 - internal environ.
- A.A. Berthold (1849)
 - repro hormones and behavior

Endocrine History

- Charles Brown-Sequard (1889)
 - Harvard 1864-1868
 - M.D. in NY 1873-1878
 - bull testis extracts

Important Physiologists

- Walter Cannon
 - homeostasis
 - sympathetic nervous system
 - Bodily Changes in Hunger, Fear, and Rage

1. Peptide/Protein Hormones

- Most common hormone
- translated, packaged, & sent
- Hydrophilic/Lipophobic
- Bind surface receptors at target
- Binding mediates signal transduction/2nd messenger system
Peptide Hormones cont.

- Short 1/2-life
- Pancreas
 - Insulin/glucagon
- Hypothalamus
 - RH (releasing hormones)
 - RIH (release inhibiting hormones)

2. Steroid Hormones

- Derived from cholesterol
- Hydrophobic/Lipophilic
- Travel with a protein carrier
- Long 1/2-life
- Binds to cytoplasmic or nuclear receptor
 - 1st Messenger

Steroid hormones cont.

- Genomic effect
 - Activates genes
 - Directs synthesis of new proteins
- Lag time between hormone binding and effect = long time.
- Gonads & placenta
- Adrenal cortex

3. Amine Hormones

- Synthesized from a single amino acid
- Melatonin from tryptophan
- Thyroid hormone from tyrosine
- Catecholamines (EPI, DA) from tyrosine

Epinephrine (an amine)

4. Eicosanoid hormones

- Produced from 20carbon fatty acid, arachadonic acid
- Produced in all cells except RBCs
- 2nd messenger
- Prostaglandins and leukotrienes
- inflammation

- A. Peptide/ Protein 2M
- B. Steroid
- C. Amine
- D. Eicosanoid

- A. Peptide/ Protein 2M
 B. Steroid 1M
 C. Amine
- D. Eicosanoid

A.	Peptide/ Protein	2M
B.	Steroid	1M
C.	Amine	2M
Л	D ¹	

D. Eicosanoid

A.	Peptide/ Protein	2M
B.	Steroid	1M
C.	Amine	2M
D.	Eicosanoid	2M

Negative Feedback

- Low levels of T3 or T4 in blood or low BMR = stimulus
- Hypothalamus releases TRH
- TRH stimulates the ANTERIOR PITUITARY to release TSH
- TSH stim. Thyroid to release T3 & T4
- Levels of T3 & T4 shut off Hypothal. & Anterior Pituitary

Click here for a larger view

Adrenal cortex feedback

- Low glucocorticoid (cortisol) levels or low blood sugar
- Stim. Hypothal. = CRH
- CRH stim. Anterior Pit. = ACTH
- ACTH stim. Adrenal Cortex.
- Increase glucocort. Level then blood sugar level

Download more resources like this on ECOLEBOOKS.COM

Adrenal gland

Download more resources like this on ECOLEBOOKS.COM

Adrenal Problems

Hypersecretion of Adrenal Cortex

Download more resources like this on ECOLEBOOKS.COM

What Would the Feedback Loop Look Like for Cushing's Syndrome?

(a) Facial features

(b) Pendulous abdomen with striae