LINEAR MOTION

- DISTANCE
- SPEED AND VELOCITY
- ACCELERATION

Specification

Forces and motion

<u>Movement and position</u> plot and interpret distance-time graphs know and use the relationship: average speed = distance moved / time taken describe experiments to investigate the motion of everyday objects such as toy cars or tennis balls know and use the relationship: acceleration = change in velocity / time taken a = (v - u) / tplot and interpret velocity-time graphs determine acceleration from the gradient of a velocity-time graph determine the distance travelled from the area between a velocity-time graph and the time axis.

Average Speed

average speed = <u>distance</u> time

In physics speed is usually measured in: metres per second (m/s)

also: distance = speed x time

and: time = distance speed

Speed Conversions

1 kilometre per hour (km/h) = 1000 metres per hour but 1 hour = 3600 seconds therefore 1 km/h = 1000m \div 3600 s 1 km/h = 0.28 m/s and 1 m/s = 3.6 km/h

Also: 100 km/h = approx 63 m.p.h

Calculate the average speed of a car that covers 500m in 20s. average speed = <u>distance</u> time = 500m / 20s

= 25 m/s (about 60 mph)

Sound waves travel at about 340m/s through air. How far will a sound wave travel in one minute?

Sound waves travel at about 340m/s through air. How far will a sound wave travel in one minute?

distance = speed x time = 340 m/s x 1 minute = 340 m/s x 60 seconds = 20 400 m (20.4 km)

Complete

distance	time	average speed
60 m	3 s	m/s
m	35 s	40 m/s
300 m	S	1500 m/s
80 km	2 h	km/h
150 x 10 ⁶ km	Min s	3.0 x 10 ⁸ m/s
1 km	S	330 m/s

Complete

distance	time	average speed
60 m	3 s	20 m/s
1400 m	35 s	40 m/s
300 m	0.20 s	1500 m/s
80 km	2 h	40 km/h
150 x 10 ⁶ km	8 min 20 s	3.0 x 10 ⁸ m/s
1 km	3.03 s	330 m/s

Distance-time graphs

Distance (metres, m)	0	1000	2000	3000	4000	5000	6000
Time (seconds, s)	0	40	80	120	160	200	240

The **slope or gradient** of a distance-time graph increases with **speed**.

The **slope or gradient** of a distance-time graph is equal to the **speed**.

In the graph opposite: slope = 150m / 10s = 15 m/s = speed

Question 1

Sketch on the same set of axes distancetime graphs for: (a) a car moving at a steady speed, (b) a bus moving at a steady speed greater than the car, (c) a lorry increasing in speed from rest.

Question 1

Sketch on the same set of axes distancetime graphs for: (a) a car moving at a steady speed, (b) a bus moving at a steady speed greater than the car, (c) a lorry increasing in speed from rest.

Question 2

Describe the motion of the three lorries X, Y and Z shown in the graph below.

Lorry X: Moving quickest speed = 45000m / 1800s = 25 m/s

Lorry Y: speed = 36000m / 1800s = 20 m/s

Lorry Z: Moving slowest 0 to 600s; speed = 10000m / 600s = 16.7 m/s 600 to 1200s; stationary 1200 to 1800s; speed = 16.7 m/s average speed = 20000m / 1800s = 11.1 m/s

Choose appropriate words to fill in the gaps below:

Speed is equal to _____ divided by time and can be measured in _____ per second.

A speed of 20 m/s is the same as _____ km/h which is approximately equal to _____ mph.

The ______ of a distance against time graph can be used to calculate ______. The greater the gradient of the line the _______ is the speed. The line will be ______ when the speed is zero.

> WORD SELECTION: slope speed distance horizontal 40 higher 72 metres

Choose appropriate words to fill in the gaps below:

Speed is equal to <u>distance</u> divided by time and can be measured in <u>metres</u> per second.

A speed of 20 m/s is the same as <u>72</u> km/h which is approximately equal to <u>40</u> mph.

The <u>slope</u> of a distance against time graph can be used to calculate <u>speed</u>. The greater the gradient of the line the <u>higher</u> is the speed. The line will be <u>horizontal</u> when the speed is zero.

> WORD SELECTION: slope speed distance horizontal 40 higher 72 metres

Velocity

The velocity of a body is its speed in a given direction.

The airplane opposite may loop at a constant speed but its velocity changes as its direction of motion changes.

A stone dropped off the top of a cliff falls down by 20m in 2s. Calculate its average velocity (a) downwards and (b) horizontally.

(a) average speed downwards = 20m / 2s= 10m/s

Therefore velocity downwards = 10 m/s (b) average speed horizontally = 0m / 2s = 0m/s

Therefore velocity horizontally = 0 m/s

Acceleration

acceleration = <u>velocity change</u> time taken

a = (v - u) / t

a = acceleration in metres per second squared (m/s²)
v = final velocity in m/s
u = initial velocity in m/s
t = time taken in seconds (s)

Why is acceleration measured in m/s²?

acceleration = <u>velocity change</u> time taken

velocity change is measured in m/s time taken is measured in s therefore acceleration = m/s \div s = m/s² Other notes: **1. Speed and velocity:** Often, but not always, speed can be used in the equation.

2. Change in velocity:

= final velocity – initial velocity

= V - U

3. Deceleration:

This is where the speed is decreasing with time.

4. Circular motion at a constant speed:

Acceleration is occurring because the direction of motion is continually changing and hence so is velocity.

Complete the table below for an airplane accelerating at $8m/s^2$.

time (s)	0	1	2	3	4
velocity (m/s)	0	8			

Calculate the acceleration of a car that changes in velocity from 5m/s to 25m/s in 4 seconds.

Calculate the acceleration of a car that changes in velocity from 5m/s to 25m/s in 4 seconds.

a = (v - u) / t= (25m/s - 5m/s) / 4s = 20 / 4 acceleration = 5 m/s²

Calculate the final velocity of a train that accelerates at 0.3m/s² for 60 seconds from an initial velocity of 5m/s.

Calculate the final velocity of a train that accelerates at 0.3m/s² for 60 seconds from an initial velocity of 5m/s.

a = (v - u) / tbecomes: $(v - u) = a \times t$ = 0.3m/s² x 60s = 18m/s therefore final train velocity = 5m/s + 18m/s = 23 m/s

Calculate the deceleration of a car that slows down from 18m/s to rest in 3 seconds.

Calculate the deceleration of a car that slows down from 18m/s to rest in 3 seconds.

a = (v - u) / t

= (0m/s - 18m/s) / 3s
= -18 / 3 (notice minus sign)
acceleration = - 6 m/s²
and so deceleration = 6 m/s²
Note: Deceleration is the negative of acceleration.

Choose appropriate words to fill in the gaps below:

Velocity is speed measured in a particular _____

A person walking northwards will have ______ velocity in a westwards direction.

Acceleration is equal to _____ change divided by the time taken. Acceleration is measured in metres per second _____.

Deceleration occurs when a body is _____ down. It is possible for a body to be accelerating even when its _____ is not changing provided its direction is, for example: a body moving in a _____.

WORD SELECTION:

speed zero slowing direction squared circle velocity

Choose appropriate words to fill in the gaps below:

Velocity is speed measured in a particular <u>direction</u>

A person walking northwards will have <u>zero</u> velocity in a westwards direction.

Acceleration is equal to <u>velocity</u> change divided by the time taken. Acceleration is measured in metres per second <u>squared</u>.

Deceleration occurs when a body is <u>slowing</u> down. It is possible for a body to be accelerating even when its <u>speed</u> is not changing provided its direction is, for example: a body moving in a <u>circle</u>.

WORD SELECTION:

speed zero slowing direction squared circle velocity

Velocity-time graphs

The slope of a velocity-time graph represents acceleration.

The area under a velocity-time graph represents distance travelled.

Question 1

Sketch the velocity time graph of a car accelerating from rest to 15m/s in 3 seconds and then remaining at a constant speed for one more second.

Calculate the acceleration and the distance travelled after 4 seconds from using the graph opposite.

Calculate the acceleration and the distance travelled after 4 seconds from using the graph opposite.

acceleration = gradient

= y-step \div x-step = (12 - 0)m/s \div (4 - 0)s = 12 / 4 acceleration = 3 m/s²

distance = area under the graph

= area of triangle

 $= \frac{1}{2} x$ base x height

 $= \frac{1}{2} \times 4s \times 12m/s$

distance travelled = 24m

Question 3

Calculate the acceleration and distance travelled using the graph shown below.

Acceleration: Acceleration equals the slope of the graph = y-step \div x-step = (16 - 4)m/s \div (10s) = 12 / 10 Acceleration = 1.2 m/s²

Distance travelled: This equals the area below the graph = area of rectangle + area of triangle = $(10s \times 4m/s) + (\frac{1}{2} \times 10s \times (12 - 4)m/s)$ = 40m + 40mDistance travelled = 80m

Calculate the distance travelled over 15 seconds and the deceleration during the final five seconds using the graph below.

Distance travelled: This equals the area below the graph = area of rectangle + area of triangle = $(10s \times 20m/s) + (\frac{1}{2} \times 5s \times 20m/s)$ = 200m + 50m Distance travelled = 250m

Deceleration: Acceleration equals the slope of the graph = y-step \div x-step = (- 20m/s) \div (5s) = - 4 m/s² but deceleration = negative of acceleration Deceleration = 4 m/s²

Distance-time graphs The gradient of a distance-time graph is equal to the speed

192-52 20 $= 7 \,\mathrm{m \, s^{-1}}$

Displacement-time graphs

The **gradient** of a displacement-time graph is equal to the **velocity**

The graph opposite shows how the displacement of an object thrown upwards varies in time.

Note how the gradient falls from a high positive value to zero (at maximum height) to a large negative value.

Estimate the initial velocity of the object. Initial gradient = $(5 - 0)m / (0.5 - 0)s = 10 ms^{-1}$ Initial velocity = 10 ms⁻¹

Question

Describe the motion shown by the displacement-time graph below:

- $O \rightarrow A$: acceleration from rest
- $A \rightarrow B$: constant velocity
- $B \rightarrow C$: deceleration to rest
- $C \rightarrow D$: rest (no motion)
- D → E: acceleration from rest back towards the starting point

Question 2

The graph shows the velocitytime graph of a car. Calculate or state:

(a) the acceleration of the car during the first 4 seconds.
(b) the displacement of the car after 6 seconds.
(c) time T.
(d) the displacement after 11 seconds.
(e) the average velocity of the car over 11 seconds.

Question 2

a) the acceleration of the car during the first 4 seconds. acceleration = gradient $= (12 - 0) \text{ms}^{-1} / (4 - 0) \text{s}^{-1}$ = 12/4acceleration = 3 ms^{-2}

Question 2

(b) the displacement of the car after 6 seconds. displacement = area = area A + area B $= \frac{1}{2} (12 \times 4) + (12 \times 2)$ = 24 + 24displacement = 48 m

Question 2

(c) time T. By similar triangles: (T - 6):(11 - T) = 12:10i.e. (T - 6) / (11 - T) = 12 / 10(T - 6) / (11 - T) = 1.20(T - 6) = 1.20 (11 - T)T - 6 = 13.2 - 1.2T2.2T = 19.2T = 19.2 / 2.2T = 8.73 seconds

Note: **T** can also be found by scale drawing or by using the equations of uniform acceleration (see later).

Question 2

(d) the displacement after 11 seconds. displacement = area = area A + area B + area C area D $= 24 + 24 + \frac{1}{2} (12 \times 2.73)$ $-\frac{1}{2}$ (10 x 2.27) = 24 + 24 + 16.38 - 11.35= 53.03displacement = 53.0 m

The equations of uniform acceleration

- **v** = FINAL velocity
- **u** = INITIAL velocity
- a = acceleration
- t = time for the velocity
 change
- s = displacement during
 the velocity change

v = u + at $v^2 = u^2 + 2as$ $s = \frac{1}{2}(u + v) t$ $s = ut + \frac{1}{2}at^2$

THESE EQUATIONS ONLY APPLY WHEN THE ACCELERATION REMAINS CONSTANT

Calculate the stopping distance of a car that is decelerated at 2.5 ms⁻² from an initial velocity of 20 ms⁻¹.

Calculate the stopping distance of a car that is decelerated at 2.5 ms⁻² from an initial velocity of 20 ms⁻¹.

 $v^2 = u^2 + 2as$ $0 = 20^2 + (2 \times -2.5 \times s)$ 0 = 400 + -5s -400 = -5s-400 / -5 = s

stopping distance = 80 m

A stone is dropped from the edge of a cliff. If it accelerates downwards at 9.81 ms⁻² and reaches the bottom after 1.5s calculate the height of the cliff.

A stone is dropped from the edge of a cliff. If it accelerates downwards at 9.81 ms⁻² and reaches the bottom after 1.5s calculate the height of the cliff.

 $S = ut + \frac{1}{2} at^2$ $S = (0 \times 1.5) + \frac{1}{2} (9.81 \times (1.5)^2)$ $S = \frac{1}{2} (9.81 \times 2.25)$ cliff height = 11.0 m

Calculate the time taken for a car to accelerate uniformly from 5 ms⁻¹ to 12 ms⁻¹ over a distance of 30m.

Calculate the time taken for a car to accelerate uniformly from 5 ms⁻¹ to 12 ms⁻¹ over a distance of 30m.

 $s = \frac{1}{2} (u + v) t$ $30 = \frac{1}{2} (5 + 12) \times t$ $30 = 8.5 \times t$ $30 \div 8.5 = t$ time = 3.53 s