

NATIONAL SENIOR CERTIFICATE

GRADE 10

NOVEMBER 2019

AGRICULTURAL SCIENCES P2 MARKING GUIDELINE

MARKS: 150

This marking guideline consists 9 pages.

SECTION A

QUESTION 1

1.1	1.1.1	D $\sqrt{}$			
	1.1.2	В √√			
	1.1.3	D $\sqrt{}$			
	1.1.4	В √√			
	1.1.5	C √√			
	1.1.6	В √√			
	1.1.7	A $\sqrt{}$			
	1.1.8	A $\sqrt{}$			
	1.1.9	A $\sqrt{}$			
	1.1.10	B $\sqrt{}$		(10 x 2)	(20)
1.2	1.2.1 1.2.2 1.2.3 1.2.4 1.2.5	E √√ F √√ D √√ H √√ A √√	ÉcoleBooks	(5 x 2)	(10)
1.3	1.3.1 1.3.2 1.3.3 1.3.4 1.3.5	Humification $\sqrt{}$ Cultivar $\sqrt{}$ Pollution $\sqrt{}$ Metaphase $\sqrt{}$ Multicellular $\sqrt{}$		(5 x 2)	(10)
1.4	1.4.1 1.4.2 1.4.3 1.4.4 1.4.5	Lithosphere √ Deciduous √ Soil crusting √ Choloroplast √ Mitosis √		(5 x 1)	(5)

TOTAL SECTION A: 45

Copyright reserved Please turn over

(2)

SECTION B

QUESTION 2: SOIL SCIENCES

2.1 **Description of soil components**

2.1.1 (a)
$$5\% \sqrt{}$$

(b)
$$45\% \sqrt{}$$

2.1.2 Functions of oxygen in the soil for plant growth

- Respiration of plant roots √
- Germination of plant seeds $\sqrt{}$

2.1.3 Calculation of the mineral component in a 1 kg soil sample

$$\frac{45 \times 1 \text{ kg}}{100} \sqrt{} = 0,45 \text{ kg} \sqrt{} \frac{45 \times 1000 \text{ g}}{100} \sqrt{100} \sqrt{100} = 450 \text{ g}$$

$$0,45 \times 1000 = 450 \text{ g} \sqrt{}$$
(3)

2.1.4 Difference between gravitational water and hygroscopic water

- Gravitational water is excess water that drains through the soil under the influence of gravity. $\sqrt{}$
- Hygroscopic water is tightly bound to the soil particles. √ (2)

2.1.5 Human activities that reduce soil organism population

- Excess fertilisation √
- Pesticides application √
- Poor waste management $\sqrt{}$
- Over-cultivation (Any 2 x 1) (2)

2.2 2.2.1 **Characteristics of minerals**

(a) Cleavage
$$\sqrt{}$$

2.2.2 Formation of secondary minerals and primary minerals

- Primary minerals are minerals formed during the original solidification of the rock under high temperature and pressure $\sqrt{}$
- Secondary minerals are formed when primary minerals undergo chemical change √ (2)

Copyright reserved Please turn over

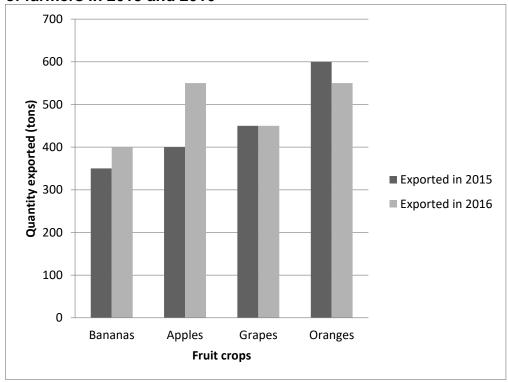
	2.2.3	 Examples of secondary minerals Kaolinite √ Vermiculite √ Illite √ Haematite √ Goethite √ (Any 2 x 1) 	(2)
2.3	2.3.1	Types of rocks A – Sedimentary rock √ B – Igneous rock √ C – Metamorphic rock √	(3)
	2.3.2	 Formation of Rock A and B A - Sedimentary rocks are formed when sediment is deposited by wind, water and organisms resulting in them piling up over thousands of years √ B - Igneous rocks are formed when volcanoes erupts and magma comes out and solidifies on the Earth surface √ 	(2)
	2.3.3	Suitability of rock C for cultivation of deep-rooted crops • Metamorphic rock soils are not suitable for deep rooted crops $\sqrt{}$	(1)
	2.3.4	 Motivation The soil formed is not deep √ The soil is easily compacted √ The soil is poorly drained √ which is not good for deep rooted crops (Any 2 x 1) 	(2)
2.4	2.4.1	Type of weathering ■ Biological √	(1)
	2.4.2		(1)
	2.4.3	 Other types of weathering Chemical √ Physical √ (Any 1 x 1) 	(1)
	2.4.4	 Role of oxygen in chemical weathering Oxygen speeds up the chemical reaction process on rocks which is called oxidation √ Where oxygen combines with compound elements in rocks to form oxides or rust √ that weakens the rock structure 	(2)
2.5	A – Clir	rming factors mate $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	(1) (1) [35]

Copyright reserved Please turn over

(2)

QUESTION 3: PLANT STUDIES

QUE	:5110N 3:	PLANT STUDIES		
3.1	3.1.1	 Importance of growing maize and wheat in South Africa For making sugars, alcoholic drinks, sugar and syrups √ Corn oil from maize seeds is used for making margarine and salad oil √ 		
		 Source of food for the people and livestock √ Wheat is used to make flour for bread √ Used as bio-fuel √ (Any 2 x 1)) (2)	
	3.1.2	 Climatic conditions suitable for winter wheat Needs cool environments with optimum temperature of 20 °C–25 °C (degrees Celsius) √ Average rainfall of 600–850 mm in the winter season √ 	(2)	
	3.1.3	 Discuss why deep, well-drained soil is good for maize Deep soils encourage root development of maize crop √ Well drained soil is good for aeration √ Hard layers or compacted soils do not promote root 		
		development √ (Any 2 x 1)) (2)	
	3.1.4	Class of field crops (a) Industrial crops √ (b) Grain crops √	(1) (1)	
	3.1.5	 Function of fibre ÉcoleBooks To make paper Insulation √ Timber frames √ (Any 1 x 1)) (1)	
3.2	3.2.1	 Horticulture This is the science and art of growing fruit, vegetables and flowers √ 	(1)	
	3.2.2	Advantages of genetic engineering in horticulture • Develop disease resistant cultivars $$ • Increase nutritional content $$	(2)	
	3.2.3	Factors to consider when choosing vegetable cultivars • Adaptation to the environmental conditions/climate $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$) (3)	
	3.2.4	 Economic and environmental benefits of using disease resistant crops The farmer will save money by reducing pesticides applied √ Reduction of pesticide application reduces pollution to the 		


Copyright reserved Please turn over

environment √

3.2.5 Classification of vegetable crops

- Root √
- Stem √
- Leaves√
- Fruits √
- Flowers $\sqrt{}$ (Any 2 x 1) (2)

3.3 3.3.1 Bar graph showing quantities of fruit crops exported by a group of farmers in 2015 and 2016

Marking guideline for the bar graph

- Correct caption √
- Variable on y-axis correctly labelled and calibrated (Quantity exported) $\sqrt{}$
- Variable on x-axis correctly labelled and calibrated (Fruit crops) $\sqrt{}$
- Units indicated on y-axis (tons) √
- Bar graph √

(5)

3.3.2 Fruit crop with highest increase in export Apples $\sqrt{\sqrt{}}$

(2)

(1)

3.3.3 Challenges in exporting bananas

- Bananas are perishable / quickly rot √
- Bananas are bulk √
- Costly/expensive to transport √ (Any 2 x 1) (2)

3.3.4 Importance of exporting fruit crops to the economy of South Africa

• Exporting brings in foreign currency to the country which boosts the economy $\sqrt{}$

Copyright reserved Please turn over

(EC/NOVEMBER 2019)

AGRICULTURAL SCIENCES P2

7

3.3.5 Percentage increase of oranges produced

920 t
$$-$$
 700 t = 220 t $\sqrt{}$

$$\frac{220 \,\mathrm{t} \times 100}{700 \,\mathrm{t}} \,\sqrt{}$$

$$= 31,4\% \sqrt{}$$
 (3)

3.4 3.4.1 Reasons why Lantana camara was declared an invader

- It causes drastic loss of indigenous plants $\sqrt{}$
- It causes depletion of underground water $\sqrt{}$ (Any 1 x 1)
- 3.4.2 Exotic/Alien $\sqrt{}$ (1)

3.4.3 Reason why Lantana camara's population increases more than indigenous plants

Lantana camara has fewer natural pests and diseases that can affect its growth than indigenous plants
 [1)

Copyright reserved Please turn over

SUSTAINABLE NATURAL RESOURCE UTILISATION AND **QUESTION 4: BIOLOGICAL CONCEPTS**

4.1 4.1.1	Tillage system
-----------	----------------

Famer A/Zero tillage √

(1)

4.1.2 **Motivation**

- Zero tillage does not use expensive machines $\sqrt{}$
- It is sustainable because it reduces rate of soil erosion $\sqrt{}$
- It promotes organic residue accumulation $\sqrt{}$
- No soil tillage/cultivation $\sqrt{}$

(Any 2 x 1) (2)

Adverse effects of maximum tillage 4.1.3

- Cause air pollution $\sqrt{}$
- Cause compaction on the soil $\sqrt{}$
- Disturb activities of micro and macro-organisms $\sqrt{}$ (Any 2 x 1) (2)

4.1.4 Ways to reduce water loss

- Mulching √
- Plant cover crops √
- Removal of weeds √

(Any 1 x 1) (1)

4.1.5 Ways to reduce soil erosion in the fields

- Allow vegetation in grazing fields to recover $\sqrt{}$
- Sow cover crops √
- Practise zero cultivation/no tilling \(\sqrt{} \)
- Contour plough across slopes √
- Reduce ploughing before rain falls $\sqrt{}$

(Any 1 x 1) (1)

4.1.6 Consequences of soil degradation to consumers

- Food shortages because of decrease in production $\sqrt{}$
- Higher food prices due to shortages √
- Soil pollution threatens food safety √

(Any 2 x 1) (2)

4.2 4.2.1 Important aspects of soil living organisms

- Micro-organisms like fungi and bacteria break down/decompose organic matter into soil nutrients $\sqrt{\ }$ / It recycles soil nutrients $\sqrt{\ }$
- Macro-organisms mix and aerate the soil by burrowing and turning over the soil $\sqrt{}$
- Living soil organisms improve soil structure $\sqrt{}$ (Any 2 x 1) (2)

4.2.2 Assessment of the statement

The statement is not true $\sqrt{}$ (1)

Supporting reasons

- Farming reduces biodiversity and population of soil organisms $\sqrt{}$
- Use of fertiliser, pesticides and fumigation reduces soil organisms √
- Farming exhaust soil organic matter resulting in decrease of soil (Any 2 x 1) organisms √ (2)

Copyright reserved Please turn over

	4.2.3	 Waste management techniques Making compost with plant residues √ Use of biogas digesters √ Make use of some crop waste to make biofuel and alcoholic drinks √ (Any 2 x 1) 	(2)
	4.2.4	 National Water Act Efficiency – Farmers should use water without wasting it √ Equity – Farmers should fairly share water resource √ 	(2)
4.3	4.3.1	Plant cell √	(1)
	4.3.2	 Justification The cell has a cell wall √ Large vacuole √ (Any 1 x 1) 	(1)
	4.3.3	Labelling A − Nucleus $$ B − Chloroplast $$ C − Vacuole $$	(3)
	4.3.4	 Functions of chloroplast Site of photosynthesis √ Contains chlorophyll which absorbs energy from sunlight √ That will be used to turn carbon dioxide and water to form glucose and oxygen √ ÉcoleBooks (Any 2 x 1) 	(2)
	4.3.5	 Plant tissues and plant organs Plant tissues are a group of similar cells that carry out the same function √ Examples – epidermal tissue/collenchyma tissue/vascular tissue √ Plant organs are a part of the body that perform a particular function √ Examples – root/stem/and leaves √ 	(4)
4.4	4.4.1	Cell division • Mitosis √	(1)
	4.4.2	Justification • Two daughter cells are produced $\sqrt{}$	(1)
	4.4.3	 Important aspects of mitosis Facilitates growth √ Replaces worn out cells or tissues √ Forms the basis of asexual reproduction in plants √ (Any 2 x 1) 	(2)
	4.4.4	Phases of mitosis A – Anaphase $$ B – Telophase $$	(2) [35]

TOTAL SECTION B: 105 GRAND TOTAL: 150