E-classroom		Name: Memorandum			
		Gr 10	Date:	Time:	$1\frac{1}{2}HR$
CAPS Reference			·		
	Euclidean Geometry				
Topic	Properties of Quadrilaterals				

$2.1.1 \ OJ = 4cm$	GI bisect HJ of kite GHIJ
$2.1.2 \ \widehat{l_1} = 60^{\circ}$	GI bisect Î of kite GHIJ
$2.1.3$ In ΔHIO and ΔJIO	
1) $HO = OJ = 4cm$	Proven at 2.1.1
2) HI = JI 3) OI = OI	Given Common
$\therefore \Delta HIO \equiv \Delta JIO$	S, S, S

Statement	
-----------	--

 $2.2 \ AD = BC$

But AO = OD

AO + OD = AD

And BP = PC

 $\therefore BP + PC = BC$

 $\therefore OD = PC$

And OD//PC

∴ OPCD is a parallelogram

Reason

Given ABCD is a parallelogram

Given

Given

Given

One pair of opposite sides are equal and parallel.

In $\triangle ABC$ and $\triangle CDB$

Statement

- 1) AB = CD
- 2) BC = BC
- 3) AC = BD

 $\therefore \Delta ABC \equiv \Delta CDB$

 $\therefore \hat{C} = \hat{B} \text{ and } \hat{A} = \hat{D}$

$$\hat{C} = \hat{B} = \hat{A} = \hat{D} = 90^{\circ}$$

∴ ABCD a rectangle

Reason

Opposite sides of a parallelogram ABCD are equal Common

Given Cole Books

S, S, S

Interior <s of a quadrilaterals is equal to 360°

Statement

Reason

 $2.4.1 \ D\hat{O}G = 90^{\circ}$

(Pyth)

2.4.2 $DG^{2} = 4^{2} + 3^{2}$ = 16 + 9 $DG = \sqrt{25}$ DG = 5 cm

∴ *DOGH* is a rectangle

2.4.3 DO = HG Given Given

Given
Opposite of rectangle are equal

Statement

Reason

2.5

In ΔPOS and ΔQTR

1)
$$PS = QR$$

2)
$$\widehat{P_2} = \widehat{R_2}$$

2)
$$\widehat{P_2} = \widehat{R_2}$$

3) $\widehat{P_1} + \widehat{P_2} = \widehat{T_2} + \widehat{T_2} = 180^{\circ}$
 $\therefore \widehat{P_1} = \widehat{T_1}$

$$\begin{array}{l} :: \Delta POS \equiv \Delta QTR \\ :: \Delta POQ \equiv \Delta STR \end{array}$$

$$\therefore \Lambda P \Omega \Omega = \Lambda S T R$$

∴ *QTSO* is a parallelogram

Given

Alternating <s PS//QR <s on a straight line

S, A, A