

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATHEMATICS P2

NOVEMBER 2019

MARKS: 100

TIME: 2 hours

This question paper consists of 10 pages and a 15-page answer book.

downloaded from Stanmorephysics.com

CAPS - Grade 10

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of EIGHT questions.
- 2. Answer ALL the questions in the SPECIAL ANSWER BOOK provided.
- 3. Clearly show ALL calculations, diagrams, graphs, etc. that you used to determine the answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 6. Diagrams are NOT necessarily drawn to scale.
- 7. You must use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 8. Write neatly and legibly.

CAPS - Grade 10

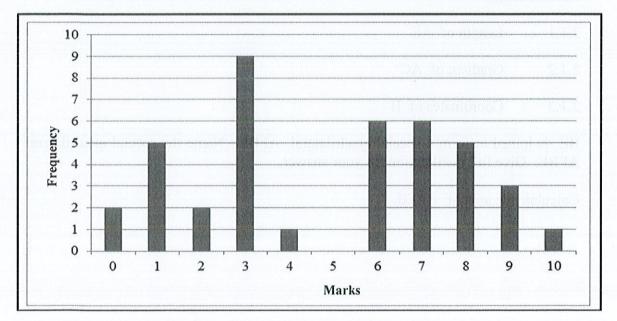
QUESTION 1

1.1 An ice cream vendor recorded his daily sales for a period of time. The number of ice creams that he sold each day is given in the table below.

5	7	8	10	13	15	15	15	21	24
29	30	32	36	38	44	45	51	55	

1.1.1 Write down the mode of the data set.

(1)

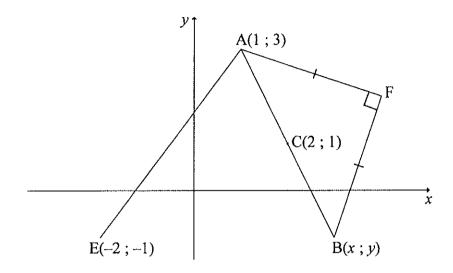

1.1.2 Determine the median of the data set.

(1)

1.1.3 Calculate the interquartile range.

- (3)
- 1.1.4 On the scaled line provided in the ANSWER BOOK, draw a box and whisker diagram for the data set.
- (2)
- 1.2 Learners in a certain class wrote a Mathematics test that had a maximum mark of 10. The teacher represented the marks obtained by the learners of this class in the bar graph below.

Bar graph showing distribution of marks scored in Mathematics test


- 1.2.1 How many learners scored 8 marks out of 10 for the test? (1)
- 1.2.2 How many learners are in this class? (1)
- 1.2.3 Calculate the range of the marks scored in the test. (2)
- 1.2.4 If the pass mark for the test was 50%, what percentage of the learners failed the test?
- 1.2.5 Calculate the mean mark scored in the test. (3)

[16]

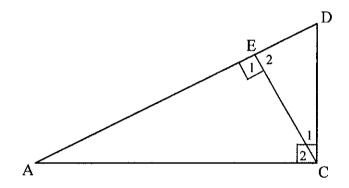
(2)

In the diagram below, A(1; 3), B(x; y) and E(-2; -1) are points on a Cartesian plane. C(2;1) is the midpoint of AB. Also, F is a point such that AF = FB and AF \perp FB.

2.1 Determine the:

2.1.1	Length of AE	(2)
	Evingen of 112	(-)

2.2 BE is joined to form a special quadrilateral AFBE. Name the special quadrilateral AFBE. Give full justification for your answer. (3)


2.3 Calculate the area of $\triangle AFB$. (5)

[15]

CAPS - Grade 10

QUESTION 3

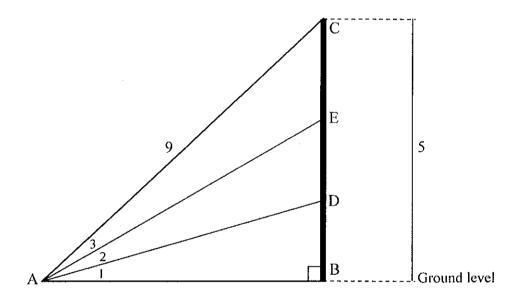
- 3.1 If $x = 37^{\circ}$ and $y = 44^{\circ}$, calculate the value of $\sin^2 x + 2\cos y$. (1)
- 3.2 WITHOUT using a calculator, determine the value of $\frac{\sin 30^{\circ} \cdot \cot 45^{\circ}}{\cos 30^{\circ} \cdot \tan 60^{\circ}}$ (3)
- In the diagram below, \triangle ACD is right-angled at C. E lies on AD such that CE is perpendicular to AD.

- 3.3.1 Write down the ratio for $\cos D$ in $\triangle ACD$. (1)
- 3.3.2 Write down the ratio for $\cos D$ in $\triangle CED$. (1)
- 3.3.3 If AD = 13 units and DC = 5 units, calculate the length of ED. (2)
- 3.4 Given that $\cos \theta = \frac{5}{13}$ and $\sin \theta < 0$.

With the aid of a diagram and WITHOUT using a calculator, determine the value of:

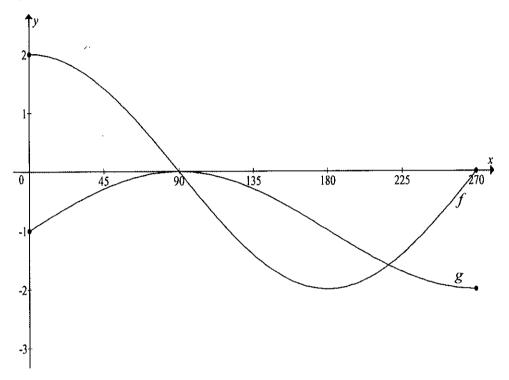
3.4.1
$$\sin \theta$$
 (3)

3.4.2
$$\sec \theta + \tan^2 \theta + 1$$
 (4) [15]


downloaded from Stanmorephysics.com

4.1 If $0^{\circ} \le \theta \le 90^{\circ}$, solve for θ in each of the following questions:

4.1.1
$$2\sin\theta + 1 = 1,28$$
 (2)


$$4.1.2 \tan 2\theta = 4 \cot 60^{\circ} (3)$$

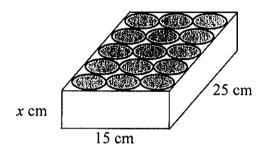
4.2 In the diagram below, B is the foot of a multi-storey building. Three people, D, E and C, are standing at the windows on three different floors. They are all looking at object A on the ground, which is in the same horizontal plane as B. AC = 9 units, BC = 5 units and $\hat{A}_1 = \hat{A}_2 = \hat{A}_3$.

Calculate the:

Sketched below are the graphs of $f(x) = 2\cos x$ and $g(x) = \sin x - 1$ for the interval $x \in [0^{\circ}; 270^{\circ}]$.

5.1 Write down the:

5.1.1 Period of
$$f$$
 (1)

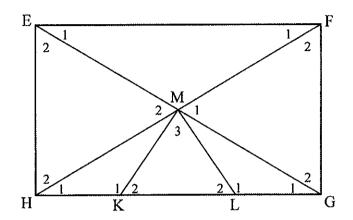

5.1.2 Range of
$$g$$
 (2)

5.1.3 Number of solution(s) to
$$f(x) = g(x)$$
 in the interval $0^{\circ} \le x \le 270^{\circ}$ (1)

5.2 For which value(s) of x in the interval
$$0^{\circ} \le x \le 270^{\circ}$$
 is $f(x).g(x) \ge 0$? (2)

The graph h is obtained by reflecting graph g about the x-axis. Write down the coordinates of the minimum turning point of h in the interval $0^{\circ} \le x \le 270^{\circ}$. (2)

An open rectangular cardboard box has the following dimensions: length = 25 cm, breadth = 15 cm and height = x cm. The volume of the box is 3000 cm³. Fifteen (15) identical cans of cold drink fit snugly into the box, as shown in the diagram below. The box and the cans are of equal height. (Ignore the thickness of the cardboard in your calculations.)

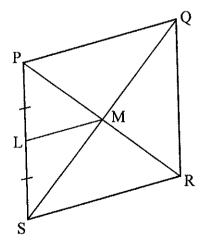


- 6.1 Calculate the height of the box. (3)
- 6.2 Calculate the radius of a can. (2)
- 6.3 If a can is filled to the top, calculate the volume of cold drink contained in the can. (2)
- 6.4 Calculate the volume of the space in between all the cans in the box. (2)

Give reasons for ALL geometry statements used in QUESTIONS 7 and 8.

QUESTION 7

7.1 In the diagram, EFGH is a rectangle having diagonals intersecting at M. $\hat{M}_2 = 60^{\circ}$ and $\hat{L}_2 = 40^{\circ}$.



Calculate the size of:

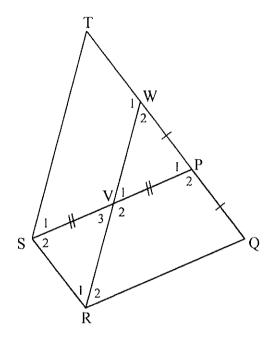
7.1.1
$$\hat{\mathbf{F}}_1$$
 (2)

7.1.2
$$\hat{GML}$$
 (3)

7.2 PQRS is a rhombus with diagonals PR and SQ intersecting at M. The perimeter of the rhombus is 12 cm. L is the midpoint of PS.

Calculate the length of LM.

(4)


8.1 Complete the statement so that it is TRUE:

The diagonals of a parallelogram ... each other.

(1)

In the diagram below, P is the midpoint of side WQ of Δ WQR. V is on WR 8.2 such that VP||RQ. PV is produced by its own length to S. PW is produced to T and ST drawn.

10

- 8.2.1 Give a reason why WV = VR. (1)
- 8.2.2 Prove that:

(a)
$$\Delta VWP \equiv \Delta VRS$$
 (3)

(b) SWPR is a parallelogram (2)

(c) PQRS is a parallelogram (3)

8.2.3 If it is further given that RSTW is a parallelogram, show that TQ = 3SR. (2)

[12]

downloaded from Stanmorephysics. Com: 100

	resources	like	this	on	ECOLEBOOKS.COM
NAME OF LEAKNER:					
NAAM VAN LEERDER:	apadanting ratiosa so	WHITE HA			
CLASS:		er en en en en en en			
KLAS:					

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

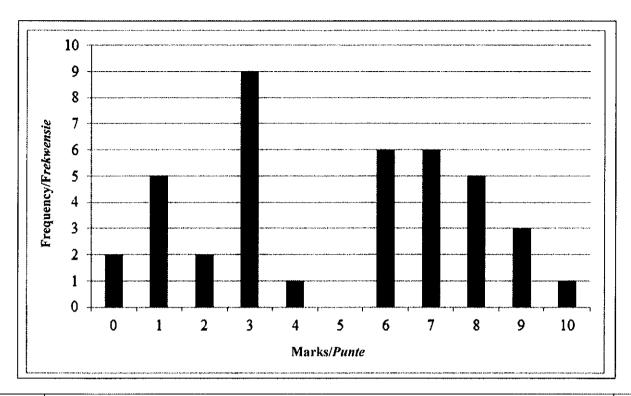
MATHEMATICS P2/WISKUNDE V2

GRADE/GRAAD 10

NOVEMBER 2019

SPECIAL ANSWER BOOK SPESIALE ANTWOORDEBOEK

QUESTION VRAAG	MARK PUNT	INITIAL <i>PARAAF</i>	MODERATION MODERERING	INITIAL <i>PARAAF</i>
1				
2				
3				
4				
5				
6				
7				
8	50 OF	25, 21		
TOTAL TOTAAL (100)				


This answer book consists of 15 pages. Hierdie antwoordeboek bestaan uit 15 bladsye.

	Solution	on/ <i>Opla</i>	ossing												 Marks Punte
			5	7	8	10	13	15	15	15	21	24			
			29	30	32	36	38	44	45	51	55		•		
1.1.1															 (1)
1.1.2															
															 (1)
1.1.3				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							-				_
			····						·- , · · · 						 _
															
															 (3)
1.1.4			 ,					· ,							
	0	5	10											55	
															(2)

downloaded from Stanmorephysics.com

CAPS/KABV - Grade/Graad 10 (Answer Book/Antwoordeboek)

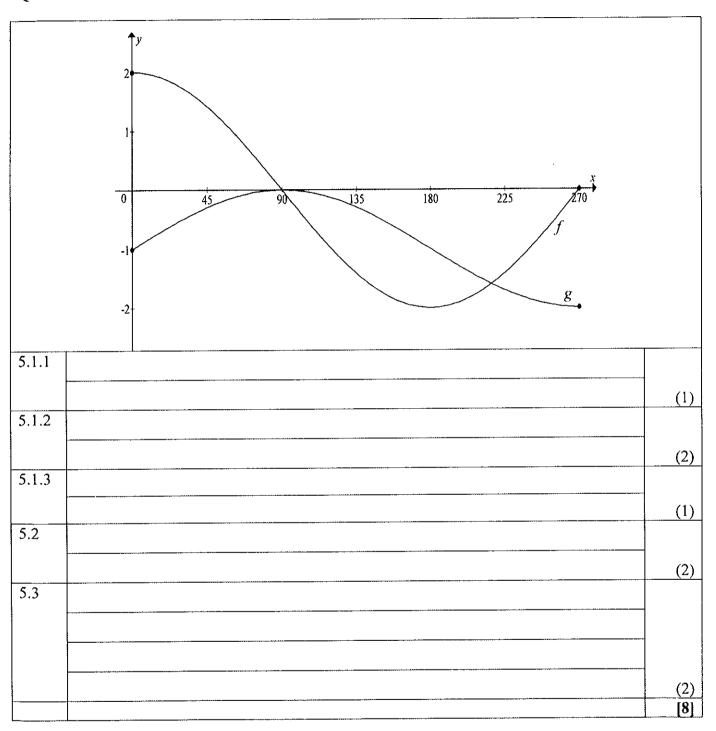
1.2.1	(1)
1.2.2	(1)
1.2.3	(-)
	(2)
1.2.4	(2)
	(2)
1.2.5	
	(3)
	[16]

	Solution/Oplossing	Marks <i>Punte</i>
	A(1;3) $C(2;1)$ $E(-2;-1)$ $B(x;y)$	
2.1.1		
2.1.2		(2)
2.1.3		(2)
		(3)

CAPS/KABV - Grade/Graad 10 (Answer Book/Antwoordeboek)

2.2		
2.2		(3)
2.3		
		. .
		(5) [15]
	1	1151

	Solution/Oplossing	Marks <i>Punte</i>
3.1		
3.2		(1)
3.3		(3)
	$\frac{E}{1}$ $\frac{1}{2}$ C	
3.3.1		(1)
3.3.2		
3.3.3		(1)
		(2)


CAPS/KABV - Grade/Graad 10 (Answer Book/Antwoordeboek)

3.4.1	
	(3)
3.4.2	
	-
	(4)
	[15]

	Solution/Oplossing	Marks <i>Punte</i>
4.1.1		
4.1.2		(2)
4.2	E 5 D B Ground level	(3)
4.2.1		(2)

CAPS/KABV - Grade/Graad 10 (Answer Book/Antwoordeboek)

4.2.2	
4.2.2	
:	
	(5)
4.2.3	
	(4)
	[16]

CAPS/KABV - Grade/Graad 10 (Answer Book/Antwoordeboek)

	Solution/Oplossing	Marks Punte
	x cm 25 cm	
6.1	·	
(2)		(3)
6.2		
		(2)
6.3		
6.4		(2)
		(2)
		[9]

	Solution/Oplossing	Marks <i>Punte</i>
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
7.1.1		
		(2)
7.1.2		
		(3)

CAPS/KABV - Grade/Graad 10 (Answer Book/Antwoordeboek)

7.2	P M R	
		(4)
L		[9]

	Solution/Oplossing	Marks <i>Punte</i>
8.1		(1)
	$\begin{array}{c} T \\ V \\ 1 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2 \\ 2 \\ Q \\ 2 \\ Q \\ Q \\ Q \\ Q \\ Q$	
	Ř	
8.2.1		
8.2.2 (a)		(1)
		(3)
8.2.2 (b)		
8.2.2 (c)		(2)
		(3)

CAPS/KABV – Grade/Graad 10 (Answer Book/Antwoordeboek)

8.2.3	
	(2) [12
	TOTAL/TOTAAL: 10
ADDITIONAL SPACE/BYKOMEN	NDE RUIMTE

Download more resources like this on ECOLEBOOKS.COM

Downloaded from Stanmorephysics.com

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 10

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2019

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 100

DEPARTMENT OF BASIC EDUCATION

PRIVATE BAG X895, PRETORIA 0001

2019 -11- 15

A PROVED MARKING GUIDELINE FUELIC EXAMINATION

These marking guidelines consist of 16 pages. Hierdie nasienriglyne bestaan uit 16 bladsye.

75/11/2019

CAPS/KABV - Grade/Graad 10 - Marking Guidelines/Nasienriglyne

NOTE:

- If a candidate answer a question TWICE, mark only the FIRST attempt.
- If a candidate crossed out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking memorandum.
- Assuming values/answers in order to solve a problem is unacceptable.

LET WEL:

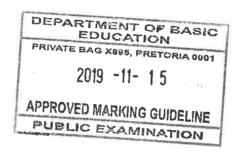
- As 'n kandidaat 'n vraag TWEE keer beantwoord het, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord deurgehaal en nie oorgedoen het nie, sien die deurgehaalde antwoord na.
- Volgehoue akkuraatheid is op ALLE aspekte van die memorandum van toepassing.
- Dit is onaanvaarbaar om waardes/antwoorde te veronderstel om 'n probleem op te los.

QUESTION/VRAAG 1

1.1.1	15 is the mode/is die modus	✓answer/antwoord (1)
1.1.2	Position of the median: $\frac{n+1}{2} = 10^{th}$ position median = 24	✓answer/antwoord (1)
	Posisie van die mediaan = $\frac{n+1}{2}$ Answer only: full m	arks
	=10de posisie mediaan=24	
1.1.3	Interquartile range $= Q_3 - Q_1$ = 38 - 13 = 25 $= Q_3 - Q_1$ = 38 - 13 = 25 Answer only: full many states are supported by the second secon	$\begin{array}{c} \checkmark Q_3 \\ \checkmark Q_1 \\ \checkmark \text{answer/} antwoord (3) \end{array}$
1.1.4	5 10 15 20 25 30 35 40 45 50	✓ box/mond CA from 1.1.2 and 1.1.3 ✓ whiskers/snor (accuracy) (2)

DEPARTMENT OF BASIC EDUCATION

PRIVATE BAG X895, PRETORIA 0001


2019 -11- 15

APPROVED MARKING GUIDELINE
PUBLIC EXAMINATION

Math Caps/K4RV - Grade/Grand 10 Marking Guideling

DBE/November 2019

	CAPS/KABV – Grade/Graad 10 – Marking Guidelines/Nasienrigl	yne
1.2.1	5 learners/leerders	✓answer/antwoord (1)
1.2.2	40 learners/leerders	✓answer/antwoord (1)
1.2.3	Range = max value - min value	
	=10-0	✓ min and max/min en maks
	= 10 Answer only: full marks	$\sqrt{\text{answer/}antwoord}$ (2)
	Varisasiewydte = maks waarde – min waarde	
	=10-0	
	=10	
1.2.4	Number of learners/ $Getal\ leerders = 1 + 9 + 2 + 5 + 2$	
	= 19	√no. of learners/getal leerders
	Percentage / Persentasie $= \frac{19}{40} \times 100$ $= 47,5\%$	✓answer/antwoord (2)
	Answer only: full marks	
1.2.5	\overline{x} = $\frac{(0 \times 2) + (1 \times 5) + (2 \times 2) + (3 \times 9) + + (10 \times 1)}{40}$	
	$\overline{x} = \frac{195}{40}$	√195 √40
	$\overline{x} = \frac{39}{8}$	
	\overline{x} = 4,88	✓answer/antwoord (3)
		[16]

2.1.1	$\Delta \Gamma = \sqrt{(m_1 - m)^2 + (m_2 - m)^2}$		
	$AE = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$		
	$=\sqrt{(1+2)^2+(3+1)^2}$	✓ substitution/	
	= 5 units Answer only: max. 1/2	vervanging	
2.1.2		✓answer/antwoord	(2)
2.1.2	$m_{AC} = \frac{y_2 - y_1}{x_2 - x_1}$		
		✓ substitution/	
	$=\frac{3-1}{1-2}$	vervanging	
		0 8	
	=-2 Answer only: max. 1/2	✓answer/antwoord	(2)
	<u>, , , , , , , , , , , , , , , , , , , </u>		
2.1.3	$x_C = \frac{x_A + x_B}{2} \qquad \qquad y_C = \frac{y_A + y_B}{2}$		
	$\frac{\gamma_C}{2}$ 2	(male at it at it a /	
	$2 = \frac{1+x}{2} \qquad 1 = \frac{3+y}{2}$	✓ substitution/ vervanging	
	_	vervanging	
	x = 3 y = -1	√x-value/-waarde	
	B(3;-1)	√y-value/-waarde	
	OR/OF Answer only: max. 3/3		(3)
	OR/OF Answer only: max. 3/3		
	$(x_A; y_A) \rightarrow (x_C; y_C)$ $[(x+1); (y-2)]$	✓ symmetry/	
		simmetrie	
	$(x_C; y_C) \rightarrow (x_B; y_B)$ by symmetry	✓ <i>x</i> -value/- <i>waarde</i>	
	$\therefore B(3;-1)$	√y-value/-waarde	

DEPARTMENT OF BASIC EDUCATION

PRIVATE BAG X895, PRETORIA 6001

2019 -11- 1 5

APPROVED MARKING GUIDELINE PUBLIC EXAMINATION

Mathenand Declaration Stanmorephysics.com
CAPS/KABV - Grade/Grand 10 - Marking Guidelings

DBE/November 2019

ř	CAPS/KABV - Grade/Graad 10 - Marking Guidelines/Nasienrigi	lyne
2.2	BE = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(3+2)^2 + (-1+1)^2}$ = 5units OR/OF BE=3+2 (horizontal line/horisontale lyn) =5units BE = AE and/en AF = BF \therefore AFBE is a kite/is 'n vlieër (2 adj. sides = but opp. sides not equal/ 2 aangr. sye = maar teenoorg. sye is nie gelyk nie)	✓BE ✓kite/vlieër ✓justification/ regverdiging (3)
	OR/OF $m_{EF} = \frac{1}{2}$ → AB is perpendicular to EF and C is the midpoint ∴ AFBE is a kite (Longer diag. bisects the shorter diag. at 90°	$\sqrt{m_{EF}} = \frac{1}{2}$ $\sqrt{\text{kite/vlieër}}$ $\sqrt{\text{justification/}}$ $regverdiging$ (3)
2.3	AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(3-1)^2 + (-1-3)^2}$ = $2\sqrt{5}$ units ∴ AC = $\sqrt{5}$ units In △ACF	√AB
	$\hat{A} = 45^{\circ}$ $\tan 45^{\circ} = \frac{CF}{\sqrt{5}}$ $CF = \sqrt{5} \text{ units}$ $Area = \frac{1}{2} \times AB \times CF$	✓ratio/verhouding ✓CF
	$= \frac{1}{2} \times 2\sqrt{5} \times \sqrt{5}$ $= 5 \text{ units}^2$ DEPARTMENT OF BASIC	✓ substitution/ vervanging ✓ answer/antwoord (5)
	PRIVATE BAG X898, PRETORIA 0001 2019 -11- 15 APPROVED MARKING GUIDELINE PUELIC EXAMINATION	

CAPS/KABV - Grade/Graad 10 - Marking Guidelines/Nasienriglyne

CAI 5/KADY - Grade/Gratia 10 - Islanking Guidelines/Islanking	yne
OR/OF	
AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(3-1)^2 + (-1-3)^2}$	
	✓AB
$= 2\sqrt{5} \text{ units}$	$\checkmark F\hat{A}B = F\hat{B}A = 45^{\circ}$
In $\triangle AFB$: $F\hat{A}B = F\hat{B}A = 45^{\circ}$ ($\angle sopp = sides$)	
$sin45^{\circ} = \frac{AF}{AB} = \frac{AF}{2\sqrt{5}}$ $AF = \sqrt{10}$	✓ratio
$AF = BF = \sqrt{10}$	
· ·	✓ substitution/
Area of $\triangle AFB = \frac{1}{2}\sqrt{10}.\sqrt{10}$	vervanging
= 5units ²	✓ answer/antwoord (5)
OR/OF	
AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
$=\sqrt{(3-1)^2+(-1-3)^2}$	
$=2\sqrt{5}$ cm	√AB
,	V AB
(8.77)	
$AB^2 = BF^2 + BF^2$	✓ Pythagoras theorem
$BF = \sqrt{\frac{20}{2}}$	/stelling van Pythagoras
$BF = \sqrt{10}$	
Area of $\triangle AFB = \frac{1}{2}\sqrt{10}.\sqrt{10}$	✓BF
2	✓ substitution/
$=5 \mathrm{units}^2$	vervanging
	✓ answer/antwoord (5)
	[15]

DEPARTMENT OF BASIC EDUCATION

PRIVATE BAG X895, PRETORIA 0001

2019 -11- 1 5

APPROVED MARKING GUIDELINE PUBLIC EXAMINATION

Mathenawin Draded verom Stanmorephysics.com

CAPS/KABV – Grade/Graad 10 – Marking Guidelines/Nasienriglyne

DBE/November 2019

QUESTION/VRAAG3

3.1	$\sin^2 x + 2\cos y$		
	$=\sin^2 37^\circ + 2\cos 44^\circ$		
	= 1,80	Answer only: full marks	✓answer/antwoord (1)
3.2	sin 30°.cot 45°		$\sqrt{\frac{1}{2}}$ and/en 1
	cos 30°. tan 60°		
	$=\frac{\frac{1}{2}.1}{}$		$\sqrt{\frac{\sqrt{3}}{2}}$ and/en $\sqrt{3}$
	$\frac{\sqrt{3}}{\sqrt{3}}$		2
	$=\frac{\frac{1}{2}.1}{\frac{\sqrt{3}}{2}.\sqrt{3}}$ $=\frac{1}{3}$		✓ answer/antwoord (3)
	$=\frac{1}{2}$	Answer only: max. 1/3	
2.2.1		5:r	
3.3.1	In \triangle ACD, $\cos D = \frac{CD}{AD}$		✓ answer/antwoord (1)
	AD		· answer/antwoord (1)
3.3.2	DE		
3.3.2	In \triangle CDE, $\cos D = \frac{DE}{CD}$		✓ answer/antwoord (1)
3.3.3			✓ equating/
	$\frac{\text{CD}}{\text{AD}} = \frac{\text{DE}}{\text{CD}}$ both/beio	$de = \cos D$	gelykstelling
	$ED = \frac{CD^2}{AD}$		
	$ED = \frac{25}{13}$		
	ED = 1,92 units/eenhede		✓ answer/antwoord (2)
	OR/OF		
	_D CD		
	$\cos D = \frac{\text{CD}}{\text{AD}}$		
	$=\frac{5}{13}$		
	$\hat{D} = 67,38^{\circ}$		$\checkmark \hat{D} = 67,38^{\circ}$
			,
	$\cos 67,38^{\circ} = \frac{ED}{5}$		
	ED = 1,92 units/eenhede		✓ answer/antwoord
	T	DEPARTMENT OF B	ASIC (2)

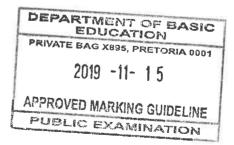
EDUCATION

PRIVATE BAG X895, PRETORIA 0001

2019 -11- 15

APPROVED MARKING GUIDELINE

PUBLIC EXAMINATION


	CAPS/KABV - Grade/Graad 10 - Marking Guidelines/Nasienrigly	ine
3.4.1	$\cos \theta = \frac{5}{13}$ $y^{2} = r^{2} - x^{2}$ $= (13)^{2} - (5)^{2}$	✓ diagram in correct quadrant
	= 144 y = -12 (in the 4th quad/in 4de kwad) ∴ $\sin \theta = -\frac{12}{13}$	✓ y-value/-waarde
3.4.2	$\sec \theta + \tan^2 \theta + 1$ $= \frac{13}{5} + \left(\frac{-12}{5}\right)^2 + 1$ $= \frac{13}{5} + \frac{144}{25} + 1$ $= \frac{234}{25}$	✓ answer/antwoord (3) $ \sqrt{\frac{13}{5}} $ ✓ $\frac{-12}{5}$ ✓ 234 ✓ 25 (4)
		[15]

DEPA	RTMENT OF BAS	BIC
PRIVAT	E BAG X895, PRETORIA 0	001
1 48	2019 -11- 15	
APPRO	VED MARKING GUIDELI	NE
	LIC EXAMINATIO	

Math Math Machan Machad

DBE/November 2019

4.1.1	$2\sin\theta + 1 = 1,28$			
	$2\sin\theta = 0.28$		✓ simplification/	
	$\sin\theta = 0.14$	Penalty for incorrect	vereenvoudiging	
	$\theta = 8,05^{\circ}$	rounding in this question only.	✓ answer/antwoord	(2)
4.1.2	$\tan 2\theta = 4 \cot 60^{\circ}$			
	$\tan 2\theta = \frac{4}{\sqrt{3}}$ $2\theta = 66,5867^{\circ}$		$\checkmark \frac{4}{\sqrt{3}}$ $\checkmark 66,5867$ °	
	θ = 33,29°		✓ answer/antwoord	(3)
4.2.1	In ⊿ABC			
	$\sin A = \frac{BC}{AC} = \frac{5}{9}$ $C\hat{A}B = 33,75^{\circ}$		✓ ratio/verhouding	(2)
	55,75		✓ answer/antwoord	(2)
	OR/OF			
	$AB = 2\sqrt{14}$ (Pythagoras theorer	n)/stelling van Pythagoras		
	$\cos A = \frac{2\sqrt{14}}{9}$		✓ ratio/verhouding	
	$A = 33,75^{\circ}$		✓answer/antwoord	(2)
	OR/OF			
	$tanA = \frac{5}{2\sqrt{14}}$		✓ ratio/verhouding	
	$A = 33,75^{\circ}$		✓ answer/antwoord	(2)

4.2.2	Finding AB:		
	$\sqrt{9^2 - 5^2} = 7,48 \text{ units/eenhede}$	✓AB	
	OR / OF		
	In $\triangle ABC$: $\cos \hat{A} = \frac{AB}{9}$		
	$AB = \cos 33,75^{\circ} \times 9$		
	AB = 7,48 units/eenhede	√AB	
	OR/OF	V AD	
	BC = 5units		
	$AB = \frac{5}{\tan 33,75^{\circ}}$		
	= 7,48 units/eenhede		
	:. In $\triangle AEB$: $\hat{A}_1 + \hat{A}_2 + \hat{A}_3 = 33,75^{\circ}$		
	$\hat{A}_1 + \hat{A}_2 = B\hat{A}E = 22,50^{\circ}$	\checkmark BÂE = 22,50°	
	$\cos \hat{A} = \frac{AB}{AE}$	✓ ratio/verhouding	
	$\cos 22.5^{\circ} = \frac{7.48}{AE}$		
	AE $AE = 8,096$	✓ substitution/	
	712 - 0,030	vervanging	
	AE = 8,10	✓AE	(5)

DEPARTMENT OF BASIC EDUCATION

PRIVATE BAG X806, PRETORIA 0001

2019 -11- 15

APPROVED MARKING GUIDELINE PUBLIC EXAMINATION

Mathenaurroman Mathenaurroman Mathenaurroman Stanmorephysics.com

CAPS/KABV – Grade/Grand 10 – Marking Guidelines/Nasienriglyne

DBE/November 2019

4.2.3	CAPS/KABV – Grade/Graad 10 – N In ⊿ABE	idiking Odideimes/ivastem igi	yne	
	$BE = \sqrt{AE^2 - AB^2}$			
	$=\sqrt{(8,1)^2-(7,48)^2}$		✓BE	
	= 3,11		, PE	
	OR/ OF BE = $\sin 22.5^{\circ} \times 8.10 = 3.10$			
	OR/OF			
	BE = $\tan 22.5^{\circ} \times 7.48 = 3.10$			
	In ⊿ABD			
	$\tan 11,25^{\circ} = \frac{DB}{AB}$			
	∴ DB = $\tan 11,25^{\circ} \times 7,48$ DB = $1,49$		√DB	
	DE = BE - DB	211 140	✓ BE - DB	
	= 3,10-1,49 or $= 1,61 units/eenhede$	•	✓ answer/antwoord	(4)
				[16]

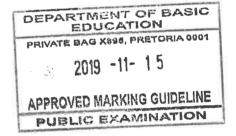
DEPARTMENT OF BASIC EDUCATION
PRIVATE BAG X895, PRETORIA 0001
2019 -11- 15
APPROVED MARKING GUIDELINE
PUBLIC EXAMINATION

5.1.1	Period of/ <i>Periode van f</i> : 360°	√answer/antwoord	
			(1)
5.1.2	Range of/ <i>Waardeversameling van g</i> : $-2 \le y \le 0$ or/of $y \in [-2; 0]$	✓ critical values/	
		kritieke waardes	
		✓ notation/antwoo	rd
			(2)
5.1.3	2 solutions/oplossings	✓answer/antwoord(1)	
5.2	$90^{\circ} \le x \le 270^{\circ} \text{ or/of } x \in [90^{\circ}; 270^{\circ}]$	✓ critical values/	
		kritieke waardes	
		✓ notation	(2)
5.3	$h(x) = -\sin x + 1$		
	Minimum T.P/Draaipunt = (90;0)	✓✓ (90°; 0)	(2)
		(accuracy marks)	
			[8]

QUESTION/VRAAG 6

6.1	Volume of the box/van houer = $L \times B \times H$	√formula/formule
	$3000 = 25 \times 15 \times x$	✓ substitution/
	3000	vervanging
	$x = \frac{3000}{375}$	
	x = 8 cm	
	The height of the box/hoogte van houer = 8 cm	✓ answer/antwoord (3)
6.2	The diameter of each can is 5 cm./	
	Die diameter van elke blikkie is 5 cm.	√diameter
	The radius of each can is 2,5 cm./	
	Die radius van elke blikkie is 2,5 cm.	✓ answer/antwoord (2)
	Answer only: full marks	
6.3	Volume of drink in a can/van koeldrank in blikkie = $\pi r^2 h$	
	$=\pi(2,5)^2(8)$	✓ substitution into
	$=\pi(2,5)^2(8)$	correct formula/
	$=157,08 \text{ cm}^3$	vervanging ✓ answer/antwoord
6.4	Volume of the remaining space = V of the box – V of the 15 cans/ Volume van oorblywende spasie = V van die houer – V van die 15 blikkies	(2)
DEF	$= 3000 - (15 \times 157,08)$	√15×157,08
of the supplemental programmer and the supplemental programmer	= 3000 - (15 × 157,08) = 3000 - 2356,20	✓ answer/antwoord
1.18107	ATE BAG X895, PRETORIA 0001 = $643,80 \text{cm}^3$	(2)
	2019 -11- 1 5	[9]

APPROVED MARXING GUIDELINE
PUBLIC EXAMINATION
Copyright reserved Koppiereg AND Mou


Please turn over/Blaai om asseblief

Download more resources like this on ECOLEBOOKS.COM Matheway from Stanmorephysics.com CAPS/KABV - Grade/Graad 10 - Marking Guidelines/Nasienriglyne DBE/November

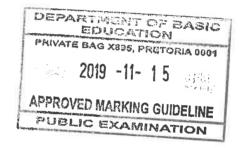
DBE/November 2019

QUESTI	ION/VRAAG 7	
7.1.1	$\hat{EMF} = 120^{\circ} (\angle's \text{ on straight line} / op reguitlyn)$	✓S/R
	$\hat{F}_1 = \hat{E}_1 = 30^\circ$ (\angle 's opp. = sides OR diag.of a rectangle = and bisect each other).	✓S/R (2)
	OR/OF	✓S/R
	$\hat{F}_1 = \hat{E}_1$ (angles opp. = sides OR diag. of a rectangle = and bisect	
	each other).	
	$\widehat{M}_2 = \widehat{E}_1 + \widehat{F}_1 \text{ (ext. angle of } \Delta)$	
	$60^{\circ} = \hat{E}_1 + \hat{F}_1$	✓ answer/antwoord
	$\therefore \hat{F}_1 = 30^{\circ}$	(2)
7.1.2	$\hat{E}_1 = \hat{G}_1 = 30^{\circ} (Alt. \angle 's: EF \parallel HG)$	√S/R
	$\hat{L}_2 = \hat{G}_1 + G\hat{M}L \text{ (ext. } \angle = \text{sum of two opp. int. } \angle \text{'s)}$ $40^\circ = 30^\circ + G\hat{M}L$	√S/R
	$\hat{GML} = 10^{\circ}$	✓ answer/antwoord
	OR/OF $\widehat{M}_1 = 60^\circ \qquad \text{(vert. opp. angles)}$ $\therefore \widehat{G}_2 = \widehat{F}_2 = 60^\circ \qquad \text{(angles opp. = sides)}$ But $\widehat{G}_2 + \widehat{G}_1 = 90^\circ \qquad \text{(angles of rectangle)}$ $\widehat{G}_1 = 30^\circ$ $\widehat{L}_2 = \widehat{G}_1 + G\widehat{M}L \qquad \text{(ext. angle of } \Delta\text{)}$ $40^\circ = 30^\circ + G\widehat{M}L$ $G\widehat{M}L = 10^\circ$ OR/OF $\widehat{G}_1 = \widehat{E}_1 = 30^\circ \qquad \text{(alt. angle EF HG)}$ $\widehat{L}_2 = 40^\circ \qquad \text{(given)}$	$\sqrt{\hat{G}_1} = 30^{\circ}$ $\sqrt{S/R}$ $\sqrt{answer/antwoord}$ (3) $\sqrt{\hat{G}_1} = 30^{\circ}$
	$\hat{L}_2 = 40 \qquad \text{(given)}$ $\hat{L}_1 = 180 - 40^\circ = 140^\circ \qquad \text{(angles in str. line)}$	√S/R
	$L_1 = 180 - 40^\circ = 140^\circ$ (angles in str. line) $G\widehat{M}L = 180^\circ - 140^\circ - 30^\circ$	· 0/1X
	$G\widehat{M}L = 10^{\circ}$ (sum of angles in a Δ)	✓answer/antwoord (3)

	2	[9]
	$= \frac{1}{2}(3)$ $= \frac{3}{2} = 1,5 cm$	✓ answer/antwoord
	$LM = \frac{1}{2}SR \text{ (Midpoint thm/Middelpuntstelling)}$	✓S/R
	PL = LS (given/gegee) In $\triangle PSR$	· 5/10
	One side/ $Een sy = \frac{12}{4} = 3 \text{ cm}$ $\therefore SR = 3cm$ PM = MR (diag. of rhombus/rombus (ruit) PQRS)	✓SR=PQ=QR=PS =3cm ✓S/R
7.2	CAPS/KABV – Grade/Graad 10 – Marking Guidelines/Nasion Perimeter of/Omtrek van PQRS = 12 cm	

Download more resources like this on ECOLEBOOKS.COM Matheway from Stanmorephysics.com CAPS/KABV - Grade/Graad 10 - Marking Guidelines/Nasienriglyne DBE/November

DBE/November 2019


QUESTION/VRAAG 8

8.1	Bisect/Halveer mekaar	✓ answer/an	
8.2.1	A line drawn from the midpoint of one side of a triangle parallel to another side bisects the third side./'n Lyn wat van die middelpunt van een sy van 'n driehoek parallel aan 'n ander sy getrek word, halveer die derde sy. OR/OF	√R	(1)
	Midpoint theorem	√R	(1)
8.2.2 (a)	In $\triangle VWP \equiv \triangle VRS$ 1. WV = VR (proved/bewys)	√S	()
9.2.241	2. $VP = SV$ (given/gegee) 3. $\hat{V}_1 = \hat{V}_3$ (vert. opp $\angle s$) $\therefore \Delta VWP \equiv \Delta VRS$ (SAS)	✓ S/R ✓ R	(3)
8.2.2(b)	WV = VR (proved/bewys) $VP = SV (given/gegee)$	√S	
	∴ SWPR is a/' n // m (diagonals bisect each other/ hoeklyne halveer mekaar)	√R	(2)
8.2.2(c)	PQ∥SR (WP∥SR OR/OF proved OR/OF same str. line as WP) SP∥RQ (given/gegee) ∴ PQRS is a parallelogram (both pairs of opp. sides are // beide pare teenoorg. sye is //)	✓S ✓R ✓R	(3)
	OR/OF PQ SR	✓S ✓R ✓R	(3)
	$VP = SV \text{ (given)}$ $VP = \frac{1}{2}RQ \text{ (Mid. pnt thm)}$ $VP RQ \text{ (V and P are mid. pnt)}$ $SP = RQ \text{ (V is the mid. pnt)}$ $\therefore PQRS \text{ is parm.} \text{ (one pair = and)}$	✓S ✓S ✓R	(3)
	DEPARTMENT OF BASIC EDUCATION PRIVATE BAG X295, PRETORIA 0001 2019 -11- 15		

Copyright reserved/Kopiereg voorbehou
APPROVED MARKING GUIDELINS PUBLIC EXAMINATION

	CAPS/KABV – Grade/Graad 10 – Marking Guidelines/Nasa OR/OF		
	VP RQ (V and P are the mid. pnt) ∴ SP RQ (same str. line as VP) SR PQ (same str. line as WP OR/OF proved) ∴ PQRS is parm. (both pairs of opp. sides are)	✓S/R ✓S ✓R	(3)
8.2.3	SR=TW (RSTW is gram) But SR=WP (provedbewys)	✓S/R	
	WP=QP (given geged) ∴TQ=TW+WP+PQ =3SR	✓S	(2)
			[12]

TOTAL/TOTAAL: 100

