

education

Department: Education PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATHEMATICS P1

COMMON TEST

JUNE 2019

MARKS:

50

TIME:

1 hour

This question paper consists of 5 pages.

Copyright reserved

Please turn over

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 5 questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Write neatly and legibly.

Download more resources like this on ECOLEBOOKS.COM

Downloaded from Stanmorephysics.com

Common Test June 2019

NSC - GRADE 10

QUESTION 1

1.1 Simplify the following expressions fully:

1.1.1
$$3x^3 - 2x^2(x+5)$$
 (2)

$$1.1.2 \qquad (2x-1)(2x+1) \tag{2}$$

1.1.3
$$\frac{1}{4}x(4x^{-1}-8x)$$
 (2)

1.2 Factorise the following expression fully:

$$y^{2}(y-2) + x^{2}(2-y) \tag{3}$$

Given that $x \le 12\frac{1}{4}$, write down the largest possible value of x if:

1.3.1
$$x$$
 is an integer (1)

1.3.2
$$x$$
 is a prime number (1)

1.3.3
$$x$$
 is a rational number (1)

≥ [12]

QUESTION 2

2.1 Determine, without the use of a calculator, the value of x in each of the following:

$$2.1.1 2x^2 - 5x + 3 = 0 (3)$$

$$\frac{x+1}{3} - \frac{x-2}{5} - 2 = 0 \tag{3}$$

2.2 Given that: 2x-3y=3 and 2x+y=7

Determine the values of
$$x$$
 and y simultaneously. (4)

2.3 The formula $F = 32 + \frac{9C}{5}$ is used for converting temperatures for degrees Celsius (°C) to degrees Fahrenheit (°F).

Make
$$C$$
 the subject of this formula. (2)

[12]

Downloaded from Stanmorephysics.com

Download more resources like this on ECOLEBOOKS.COM Downloaded from Stanmorephysics.com

education

Department:
Education
PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATHEMATICS P1

COMMON TEST

JUNE 2019

MARKING GUIDELINE

MARKS: 50

This marking guideline consists of 4 pages.

Copyright reserved Please turn over

QUESTION 1

1.1.1	$3x^3 - 2x^2(x+5)$		
	$=3x^3 - 2x^3 - 10x^2$	$\sqrt{-2x^3-10x^2}$	
	$=x^3-10x^2$	$\checkmark x^3 - 10x^2$	(2)
1.1.2	(2x-1)(2x+1)		` /
	$=4x^2 + 2x - 2x - 1$	$\sqrt{4x^2}$	(2)
	$=4x^2-1$	V 4 <i>x</i> V -1	(2)
1.1.3	$\frac{1}{4}x(4x^{-1}-8x)$		
	$=1-2x^2$	$\checkmark 1 \checkmark -2x^2$	(2)
1.2	$y^2(y-2) + x^2(2-y)$		
	$= y^2(y-2) - x^2(y-2)$	$\checkmark (y-2)$	
	$=(y-2)(y^2-x^2)$	$\checkmark (y^2 - x^2)$	
	= (y-2)(y-x)(y+x)	$\checkmark (y-x)(y+x)$	(3)
1.3.1	x = 12	$\checkmark a$	(1)
1.3.2	x = 11	√a	(1)
1.3.3	$x = 12\frac{1}{4}$	√a	(1)
	4		
	ÉcoleBooks		[12]

QUESTION 2

2.1.1	$2x^2 - 5x + 3 = 0$	
	(2x-3)(x-1) = 0	✓ factors
	$\therefore x = \frac{3}{2} \text{ or } x = 1$	(3)
2.1.2	$\frac{x+1}{3} - \frac{x-2}{5} - 2 = 0$	
	$\frac{5(x+1)-3(x-2)-2(15)}{15} = 0$	✓ LCD = 15
	5x + 5 - 3x + 6 - 30 = 0	✓
	2x = 19	
	$x = \frac{19}{2}$	√ (3)
2.2	2x - 3y = 3 (1)	
	$2x + y = 7 \qquad (2)$	
	$(1) - (2) \qquad -4y = -4$	✓
	y=1	✓ y-value
	sub $y = 1$ into (2): $2x + 1 = 7$	✓ substitution
	x = 3	✓ <i>x</i> -value

Download more resources like this on ECOLEBOOKS.COM Mathematical Marking Guideline Mathematical Marking Guideline Common Test June 2019

Common Test June 2019

OR	
2x-3y=3 (1) $2x+y=7 (2)$	
$(2) \times 3: \qquad 6x + 3y = 21$	✓
(1): $2x-3y=3$	
$(2) + (1): \overline{8x} = 24$ $x = 3$	✓ <i>x</i> -value ✓ substitution
sub $x = 3$ into (2): $2(3) + y = 7$ y = 1	✓ y-value
OR $2x - 3y = 3 (1)$	
$2x + y = 7 (2)$ $(2) \to (3): y = -2x + 7$	✓
sub (3) into (1): $2x-3(-2x+7)=3$ 2x+6x-21=3	
8x = 24 $x = 3$	✓ x-value
sub $x = 3$ into (3): $y = -2(3) + 7$ y = 1 ÉcoleBooks	✓ substitution \checkmark y-value (4)
2.3 $C = \frac{5(F - 32)}{}$	√ √
9	(2)
	[12]

QUESTION 3

3.1	p=14	✓ a ✓ a	
	p = 14 $q = 27$	$\checkmark a$	(4)
2.2			(2)
3.2	k=2	✓a	(1)
2.2		(7	(1)
3.3	$R_n = 7n - 1$	$\sqrt{7n}$ $\sqrt{-1}$	(2)
3.4	$B_6 = 3(6) + 2 = 20$		(-/
	∴ enough bolts to make $\frac{200}{20} = 10$ 6m fences	✓	
	$R_{6} = 7(6) - 1 = 41$		
	∴ enough rods to make $\frac{400}{41} = 9.8$ 6 <i>m</i> fences	✓	
	There is enough to make 9 complete 6m fences.	✓	(3)
			[8]

QUESTION 4

4.1	y-intercept: (0; –16)	✓ (1)
4.2	$g(x)=3^{x}-3$ $0=3^{x}-3$ $3^{x}=3$ x=1	$\checkmark 0=3^{x}-3$
	x=1 x -intercept: (1;0) Answer only: 2/2	√ (2)
4.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f(x)$: \checkmark x-intercepts \checkmark y-intercept \checkmark shape $g(x)$: \checkmark intercepts \checkmark asymptote
4.4	$x \in (2, \infty) \text{OR} x > 2$	(5) ✓ (1)
4.5	$x = (2, \infty)$ OR $x > 2$ ÉcoleBooks x -axis reflection	√ (1)
		[10]

QUESTION 5

5.1	y = -2	✓	(1)
5.2	Sub point (4; $-2\frac{1}{2}$) into $f(x) = \frac{-a}{x} - 2$:		
	$-2\frac{1}{2} = \frac{-a}{4} - 2$ $-\frac{1}{2} = \frac{-a}{4}$	✓ substitution	
	$a = 4 \times \frac{1}{2}$ $a = 2$	✓	(2)
5.3	y = -x + c		
	sub $(0;-2)$: $-2 = -(0) + c$ c = -2	✓ c=-2	
	$\therefore y = -x - 2$	✓	(2)
5.4	$x \in R; x \neq 0$ or $x \in (-\infty, \infty); x \neq 0$	√ √	(2)
5.5	f decreases for NO values of x .	✓	(1)
			[8]