

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 10

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2018

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 100

These marking guidelines consist of 13 pages. Hierdie nasienriglyne bestaan uit 13 bladsye.

NOTE:

- If a candidate answered a question TWICE, mark only the FIRST attempt.
- If a candidate crossed out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking guidelines.
- Assuming values/answers in order to solve a problem is unacceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE keer beantwoord het, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord deurgehaal en nie oorgedoen het nie, sien die deurgehaalde antwoord na.
- Volgehoue akkuraatheid is op ALLE aspekte van die nasienriglyne van toepassing.
- Dit is onaanvaarbaar om waardes/antwoorde te veronderstel om 'n probleem op te los.

QUESTION/VRAAG1

1.1	Marks/Pur	nte Frequency/Frekwensie	
	0	0	
	1	3	
	2	4	
	3	5	2 marks:
	4	3	all 11 values correct
	5	6	1
	6	0	1 mark: 5 – 10 values correct
	7	7	3 – 10 values correct
	8	9	0 marks:
	9	5	0 – 4 values correct
	10	0	(2)
1.2	42 learners/leerders		✓ answer/antwoord (1)
1.3.1	Range/Variasiewydte = 9 - 1 = 8	Answer only: 2/2 marks	\checkmark max = 9 and min = 1 \checkmark answer/antwoord (2)
1.3.2	$\overline{x} = \frac{(1 \times 3) + (2 \times 4) + (3 \times 4)}{2 \times 4}$ $= \frac{234}{42}$	$5) + (4 \times 3) + (5 \times 6) + (7 \times 7) + (8 \times 9) + (4 \times 3) +$	9×5) ✓ sum of (frequencies × values)
	42 = 5,57	Answer only: 3/3 marks	$\checkmark \div n$ $\checkmark \text{answer/} antwoord$ (3)
1.4	Position of the median/ $= 21,5^{\text{th/de}} \text{ position/pos}$ $Q_2 = \frac{5+7}{2}$		✓ identification of 5 and 7 $\sqrt{\frac{5+7}{2}}$
	= 6	Answer only: 3/3 marks	✓ answer/antwoord (3)
1.5			$\begin{array}{c} \checkmark Q_1 \\ \checkmark Q_3 \\ \checkmark \text{ rest of the box} \end{array}$
	1 2 3 4	5 6 7 8 9	10 (3)
			[14]

Mathematics/P2/Wiskunde/V2

3

DBE/November 2018

CAPS/KABV - Grade/Graad 10 - Marking Guidelines/Nasienriglyne

OUESTION/VRAAG2

QUESTIC	ON/VRAAG 2			
2.1.1	$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$			
	$= \sqrt{(1-6)^2 + (0-3)^2}$	Answer only: 2/2 marks	✓subst./verv.	
	$=\sqrt{25+9}$			
	$=\sqrt{34}$		✓answer/antwoord	(2)
2.1.2	$m_{\rm po} = \frac{y_2 - y_1}{y_2 - y_1}$			(2)
	$m_{PQ} = \frac{y_2 - y_1}{x_2 - x_1}$			
	$=\frac{3-0}{6-1}$	Answer only: 2/2 marks	✓ subst./verv.	
	$=\frac{3}{5}$		✓ answer/antwoord	
	5		▼ answer/antwoora	(2)
2.1.3	$x_T = \frac{x_1 + x_2}{2}$ $y_T = \frac{y_1 + y_2}{2}$	2		
	$=\frac{1+6}{2}$ $=\frac{0+3}{2}$			
	_			
	$=\frac{7}{2} \qquad \qquad =\frac{3}{2}$			
	$T\left(\frac{7}{2};\frac{3}{2}\right)$		✓x-value/x-waarde ✓y-value/y-waarde	
2.2.1	()			(2)
2.2.1	$QR = QP = \sqrt{34}$		\checkmark QR = $\sqrt{34}$	
	$QT = \frac{1}{2}PQ$ OR/OF		1	
	$QT = \frac{1}{2}PQ$ $QT = \frac{1}{2}\sqrt{34}$ OR/OF		$\checkmark QT = \frac{1}{2}\sqrt{34}$	
	$QT = \sqrt{\left(\frac{7}{2} - 6\right)^2 + \left(\frac{3}{2} - 3\right)^2}$			
	$QT = \frac{\sqrt{34}}{2}$			
	Area of $\Delta QTR = \frac{1}{2}(QR)(QT)$		✓answer/antwoord	(3)
	$=\frac{1}{2}(\sqrt{34})\left(\frac{1}{2}.\sqrt{34}\right)$			(0)
	$= \frac{17}{2} = 8.5 \text{ sq units/eer}$	nhede		
	OR/OF			

	$QR = QP = \sqrt{34}$	\checkmark QR = $\sqrt{34}$
	Area of $\triangle QTR = \frac{1}{2}$ Area of $\triangle QPR$	
	$=\frac{1}{2}\left(\frac{1}{2}.QR.QP\right)$	$\sqrt{\frac{1}{2}}\sqrt{34}$
	$=\frac{1}{2}\times\frac{1}{2}.(\sqrt{34})\left(\sqrt{34}\right)$	2
	$=\frac{17}{2}$ sq units/eenhede	✓ answer/antwoord (3)
2.2.2	$\theta = 121^{\circ} - 90^{\circ} \qquad (\text{ext } \angle \Delta/\text{buitehoek van } \Delta)$ $= 31^{\circ}$	✓ reason ✓ answer/antwoord (2)
	OR/OF	
	$Q\widehat{S}P = 59^{\circ}$ (\angle str line/hoek op reguitlyn)	$\checkmark \angle \text{sum } \Delta / binnehoek$ $van \Delta$
	$\theta = 31^{\circ}$ ($\angle \text{sum } \Delta/\text{binnehoek van } \Delta$)	✓ answer/antwoord (2)
2.2.3	$\cos\theta = \frac{PQ}{PS}$ $\cos \theta = \frac{PQ}{PS}$ $\cos \theta = \frac{\sqrt{34}}{PS}$ $\cos \theta = \frac{\sqrt{34}}{S}$	$\sqrt{\cos\theta} = \frac{PQ}{PS} \text{ or/of}$ $\sin Q\widehat{S}P = \frac{PQ}{PS}$
	PS = 6,80 S(6,8+ 1; 0) S(7,8; 0) OR/OF	✓ x-value/x-waarde ✓ y-value/y-waarde (3)
	$m_{QR} = -\frac{5}{3}$	$\checkmark m_{QR} = m_{QS}$
	$\frac{3-0}{6-x} = -\frac{5}{3}$	$\checkmark y = 0$
	$6-x \qquad 3$ $9 = -30 + 5x$	✓ x-value/x-waarde
	x = 7.8	(3)
	OR/OF $m_{QR} = -\frac{5}{3}$	
	Equation of QR $y-3 = -\frac{5}{3}(x-6)$	
	$y = -\frac{5}{3}x + 13$ $0 = -\frac{5}{3}x + 13$ $x = 7.8$	✓ equation of QR/verhouding van QR $ \checkmark y = 0 $
	S(7,8;0)	✓ x-value/x-waarde

Mathematics/P2/Wiskunde/V2

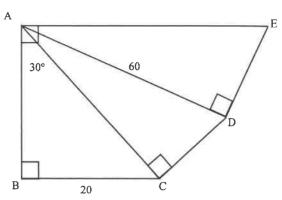
5

DBE/November 2018

CAPS/KABV - Grade/Graad 10 - Marking Guidelines/Nasienriglyne

		(3)
2.2		(3)
2.3	$m_{QR} = \frac{3 - (-2)}{6 - (9)}$	
	$=-\frac{5}{3}$	$\checkmark m_{QR}$
	$m_{T-\text{midpoint}} = m_{QR}$ (Midpoint Theorem)	$\sqrt{m_{T-\text{midpoint}}} = m_{QR}$
	$m_{T-\text{midpoint}} = -\frac{5}{3}$	✓ Midpoint theorem/ Middelpunt-stelling
	OR/OF	(3)
	Midpoint $PR\left(\frac{9+1}{2}; \frac{-2+0}{2}\right)$	
	Midpoint PR(5;-1)	✓ midpoint of PR
	Midpoint PR(5;-1) $m_{T \text{ and/en } PR} = \frac{\frac{3}{2} - (-1)}{\frac{7}{2} - (5)}$ $= -\frac{5}{3}$	✓ subst
	$=-\frac{5}{3}$	✓answer (3)
		[17]

OUESTION/VRAAG3


QUESTI	UNVKAAG 3		
3.1.1	$\tan(90^{\circ} - R) = \frac{PR}{QP} OR/OF \frac{q}{r}$	✓ answer/antwoord	(1)
3.1.2	sec Q	✓ answer/antwoord	
			(1)
	OR/OF		
	cosec R	✓ answer/antwoord	
			(1)
	OR/OF		
	$ \operatorname{cosec}(90^{\circ} - \mathrm{Q}) $	✓ answer/antwoord	
			(1)
	OR/OF		
	$\sec (90^{\circ} - R)$	✓ answer/antwoord	
			(1)
3.2.1	$OS = \sqrt{(-3)^2 + (-4)^2}$ (Pythagoras) Answer only: 2/2 marks	✓ subst./verv.	
	= 5	✓ answer/antwoord	
			(2)

3.2.2	$\sec\theta + \sin^2\theta$	$\sqrt{-\frac{5}{2}}$	
	$=-\frac{5}{3}+\left(-\frac{4}{5}\right)^2$	$\begin{array}{c} \checkmark -\frac{5}{3} \\ \checkmark -\frac{4}{5} \end{array}$	
	$= -\frac{5}{3} + \frac{16}{25}$ 77		
	$=-\frac{77}{75}$	✓answer/antwoord	(3)
3.3	$\frac{\operatorname{cosec} 45^{\circ}}{\sin 90^{\circ}. \tan 60^{\circ}}$ $\frac{1}{\sin 45^{\circ}}$	$\sqrt{\frac{2}{\sqrt{2}}}$	
	$= \frac{\frac{1}{\sin 45^{\circ}}}{(1).(\sqrt{3})}$ $= \frac{2}{\sqrt{2}} \div \sqrt{3}$ $= \frac{2}{\sqrt{2}} \times \frac{1}{\sqrt{3}}$ If the answer is left as $\frac{\sqrt{6}}{3}$ and no other rationalisation working is shown: max 3/4 marks	$\begin{array}{c} \checkmark \frac{2}{\sqrt{2}} \\ \checkmark 1 \\ \checkmark \sqrt{3} \end{array}$	
	$=\frac{2}{\sqrt{6}}$	✓ answer/antwoord	(4)
	OR/OF cosec 45° sin 90°. tan 60° 1	$\checkmark \sqrt{2}$ $\checkmark 1$	
	$= \frac{\sin 45^{\circ}}{(1).(\sqrt{3})}$ $= \frac{\sqrt{2}}{\sqrt{2}}$	$\sqrt{3}$	
	$\sqrt{3}$	✓ answer/antwoord	(4)
			[11]

Mathematics/P2/Wiskunde/V2 CAPS/KABV - Grade/Graad 10 - Marking Guidelines/Nasienriglyne

DBE/November 2018

QUESTION/VRAAG 4

			10)	
4.1.1	$\sin 30^{\circ} = \frac{20}{AC}$	$\csc 30^{\circ} = \frac{AC}{20}$	$\sqrt{\sin 30^\circ} = \frac{20}{AC}$ or	
	$AC = \frac{20}{\sin 30^{\circ}} \qquad OR/OF$	$AC = \frac{20}{\sin 30^{\circ}}$	$\cos c 30^{\circ} = \frac{AC}{20}$	
	AC = 40	AC = 40	✓ answer/antwoord	
	OR/OF			(2)
	$\cos 60^{\circ} = \frac{20}{AC}$	$\sec 60^{\circ} = \frac{AC}{20}$	$\sqrt{\cos 60^\circ} = \frac{20}{AC}$ or	
	$AC = \frac{20}{\cos 60^{\circ}} \qquad OR/OF$	$AC = \frac{20}{\cos 60^{\circ}}$	$\sec 60^{\circ} = \frac{AC}{20}$	
	AC = 40	AC = 40	✓ answer/antwoord	(2)
4.1.2	$\cos \hat{CAD} = \frac{AC}{60}$		$\checkmark \cos \hat{CAD} = \frac{AC}{60}$	
	$\cos \hat{CAD} = \frac{AC}{60}$ $\cos \hat{CAD} = \frac{40}{60}$			
	$\widehat{CAD} = 48,19^{\circ}$		✓ answer/antwoord	(2)
4.1.3	$\widehat{DAE} = 90^{\circ} - (30^{\circ} + \widehat{CAD})$			
	$\hat{DAE} = 90^{\circ} - (30^{\circ} + 48,19^{\circ})$		✓ DÂE = 11,8°	
	=11,81°			
	$\tan 11,81^\circ = \frac{DE}{60}$		$\sqrt{\tan 11,81^\circ} = \frac{DE}{60}$	
	DE = 60 tan 11,81°		✓ answer/antwoord	
	DE = 12,55			(3)

4.2.1	$\tan x = 2,01$ $x = 63,5^{\circ}$	If the rounding is incorrect: max 1/2 marks	✓✓ answer/antwoord (2)
4.2.2	$5\cos x + 2 = 4$ $5\cos x = 2$ $\cos x = \frac{2}{5}$		$\sqrt{5}\cos x = 2$ $\sqrt{\cos x} = \frac{2}{5}$
	$x = 66,4218^{\circ}$ $x = 66,4^{\circ}$		✓ answer/antwoord (3)
4.2.3	$\frac{\csc x}{2} = 3$ $\csc x = 6$ $\frac{1}{\sin x} = 6$ $\sin x = \frac{1}{6}$		$\checkmark \csc x = 6$ $\checkmark \sin x = \frac{1}{6}$
	$x = 9.6^{\circ}$		✓answer/antwoord (3) [15]

Mathematics/P2/Wiskunde/V2

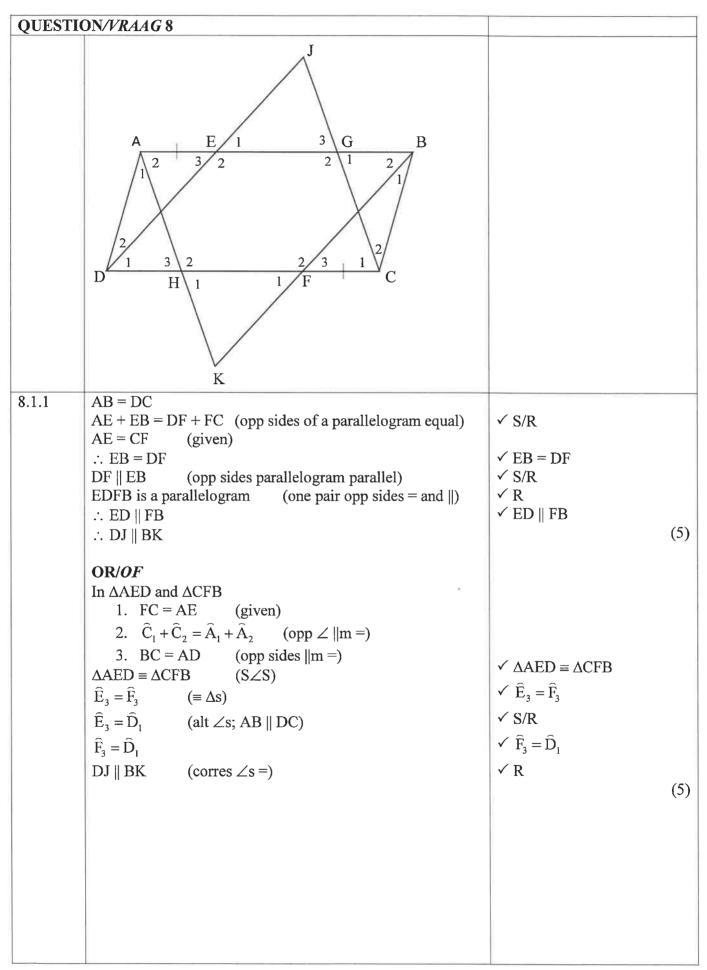
CAPS/KABV - Grade/Graad 10 - Marking Guidelines/Nasienriglyne

DBE/November 2018

QUEST	ION/VRAAG 5	
5.1.1	1 0 45 90 135 180 225 270 315 360 -1 -2 -3 - (45°; -3)	✓ Tan graph passing through (45°; -3) or (135°; 3) or (225°; -3) or (315°; 3)
5.1.2(a)	180°	✓ answer/antwoord (1)
5.1.2(b)	$h(x) = 3 \tan x$	✓ answer/antwoord (1)
5.2.1	a = -2 $b = 1$	√a √b (2)
5.2.2	$90^{\circ} < x < 270^{\circ} \text{ OR/OF } x \in (90^{\circ}; 270^{\circ})$	✓ answer/antwoord (1)
5.2.3	$-4 \le y \le 0$ \mathbf{OR}/\mathbf{OF} $y \in [-4; 0]$	✓ critical values/kritieke waardes ✓ notation/notasie (2)
5.2.4	$-2(\cos 0^{\circ} + \cos 1^{\circ} + \cos 2^{\circ} + + \cos 358^{\circ} + \cos 359^{\circ} + \cos 360^{\circ})$ $= -2(1)$ $= -2$	✓✓ answer/antwoord (2) [12]

OUESTION/VP A A C 6

	ION/VKAAG 0			
6.1	r = 3 cm			$\sqrt{r} = 3$ cm
	$V = \pi r^2 h$			
	$117\pi = \pi(3)^2 h$			✓ subst./verv.
	h = 13 cm			✓ answer/antwoord
				(3)
6.2	TSA/TBO		TSA/TBO	
	$=\pi r^2 + 2\pi rh$	OD (OF	$=\pi r^2 + 2\pi rh$	$\sqrt{\pi r^2 + 2\pi rh}$
	$=\pi(3)^2+2\pi(3)(13)\times0.8$	OR/OF	$= \pi(3)^2 + 2\pi(3)(10,4)$	✓ subst./verv.
	$= 224,31 \text{ cm}^2$		$= 224,31 \mathrm{cm}^2$	√80% of height/van
	- 22+,51 OIII		— 22 i, 3 i dii.	hoogte
				✓answer
				(4
				[7


OHESTION/VRAAG7

7.1	Bisects the third side/	Halveer die derde sy	✓ answer/antwoord	(1)
7.2	R 3 2 1 2	A P P S S		(1)
7.2.1	$CR = PS$ $PS = QR$ $CR = QR$ $\hat{Q}_1 = \hat{C}_1 = 50^{\circ}$ $\hat{R}_3 = 100^{\circ}$ $\hat{A} = 100^{\circ}$	(given) (opp sides //m =) (\angle s opp = sides) (ext $\angle \Delta$) (alt \angle s; QR AS)	$\checkmark CR = QR$ $\checkmark \hat{Q}_1 = \hat{C}_1 = 50^{\circ}$ $\checkmark \hat{R}_3 = 100^{\circ}$ $\checkmark \hat{A} = 100^{\circ}$ $\checkmark Reason$	(5)
7.2.2	3. $BR = BA$ $\Delta QBR = \Delta PBA$		\checkmark AP = PS \checkmark Reason \checkmark QP = 120 \checkmark ΔQBR = ΔPBA \checkmark QB = BP \checkmark QP = 120	(3)
				(3) [9]

Mathematics/P2/Wiskunde/V2

11

DBE/November 2018

OR/OF In $\triangle AED$ and $\triangle CFB$ 1. $FC = AE$ (given) 2. $\hat{C}_1 + \hat{C}_2 = \hat{A}_1 + \hat{A}_2$ (opp $\angle \parallel m =$) 3. $BC = AD$ (opp sides $\parallel m =$) $\triangle AED = \triangle CFB$ ($S \angle S$) $DE = FB$ ($\equiv \triangle S$) $AB = DC$ $AE + EB = DF + FC$ (opp sides of a parallelogram equal) $AE = CF$ (given) $\therefore EB = DF$ EDFB is a parallelogram (both pairs opp sides =) $DE \parallel FB$ (opp sides $\parallel m \parallel$) $DJ \parallel KB$	✓ ΔAED = ΔCFB ✓ DE = FB ✓ S/R ✓ EB = DF ✓ Reason
$\hat{E}_1 = \hat{D}_1$ (corres. $\angle s$, AB DC) $\hat{F}_1 = \hat{D}_1$ (alt. $\angle s$, DE FB) $\therefore \hat{E}_1 = \hat{F}_1$	✓S ✓R ✓S ✓R (4)
OR/OF $\hat{E}_3 = \hat{D}_1$ (alt. $\angle s$, AB DC) $\hat{F}_1 = \hat{D}_1$ (alt. $\angle s$, DE FB)	✓ S ✓ R ✓ S
$\hat{E}_3 = \hat{F}_1$ $\hat{E}_3 = \hat{E}_1 \text{(vert. opp. } \angle s\text{)}$ $\therefore \hat{E}_1 = \hat{F}_1$	✓ S/R (4)
OR/OF $\hat{E}_1 = \hat{D}_1 \text{(corres } \angle s, \text{ AB} \ \text{DC} \text{)}$ $\hat{F}_3 = \hat{D}_1 \text{(corres } \angle s, \text{ DE} \ \text{FB} \text{)}$	✓ S ✓ R ✓ S
$\therefore \hat{E}_3 = \hat{F}_1$ $\hat{F}_3 = \hat{F}_1 \text{(vert. opp. } \angle s)$ $\therefore \hat{E}_1 = \hat{F}_1$	✓ S/R (4)
OR/OF EDFB is a parallelogram (proven in 8.1.1) $\hat{E}_2 = \hat{F}_2$ (opp \angle s m =) $\hat{E}_1 = \hat{F}_1$ (\angle s on straight line)	✓S ✓R ✓S ✓R (4
	In $\triangle AED$ and $\triangle CFB$ 1. $FC = AE$ (given) 2. $\hat{C}_1 + \hat{C}_2 = \hat{A}_1 + \hat{A}_2$ (opp $\angle m =)$ 3. $BC = AD$ (opp sides $ m =)$ $\triangle AED = \triangle CFB$ (S $\angle S$) $DE = FB$ ($\equiv \triangle S$) $AB = DC$ $AE + EB = DF + FC$ (opp sides of a parallelogram equal) $AE = CF$ (given) $\therefore EB = DF$ $EDFB$ is a parallelogram (both pairs opp sides $=)$ $DE \parallel FB$ (opp sides $\parallel m \parallel)$ $DJ \parallel KB$ $\hat{E}_1 = \hat{D}_1$ (corres. $\angle S$, $AB \parallel DC$) $\hat{F}_1 = \hat{D}_1$ (alt. $\angle S$, $DE \parallel FB$) $\therefore \hat{E}_1 = \hat{F}_1$ OR/OF $\hat{E}_3 = \hat{E}_1$ (vert. opp. $\angle S$) $\therefore \hat{E}_1 = \hat{F}_1$ OR/OF $\hat{E}_1 = \hat{D}_1$ (corres $\angle S$, $AB \parallel DC$) $\hat{F}_3 = \hat{F}_1$ (vert. opp. $\angle S$) $\therefore \hat{E}_3 = \hat{F}_1$ (vert. opp. $\angle S$) $\therefore \hat{E}_3 = \hat{F}_1$ (vert. opp. $\angle S$) $\therefore \hat{E}_3 = \hat{F}_1$ (vert. opp. $\angle S$) $\therefore \hat{E}_3 = \hat{F}_1$ (vert. opp. $\angle S$) $\therefore \hat{E}_3 = \hat{F}_1$ (vert. opp. $\angle S$) $\therefore \hat{E}_3 = \hat{F}_1$ (vert. opp. $\angle S$) $\therefore \hat{E}_3 = \hat{F}_1$ (vert. opp. $\angle S$) $\therefore \hat{E}_1 = \hat{F}_2$ (opp $\angle S$) (CR)

Mathematics/P2/Wiskunde/V2

13

DBE/November 2018

CAPS/KABV - Grade/Graad 10 - Marking Guidelines/Nasienriglyne

8.2	P	
	A 2 2 1 B	
8.2.1	AP = BP (given)	✓ S
	OA = OB (gradii)	✓ OA = OB
	OAPB is a kite (two pairs adj sides =)	✓ OAPB is a kite/'n vlieër
		✓ two pairs adj sides =
	AT = TB (one diag of kite bisects the other)	✓ reason/rede
	OR/OF	(5)
	In $\triangle OAP$ and $\triangle OBP$ 1. $AP = BP$ (given) 2. $OA = OB$ (radii) 3. OP is common $\therefore \triangle OAP \equiv \triangle OBP$ (SSS)	\checkmark AP = BP \checkmark OA = OB
	$\widehat{O}_1 = \widehat{O}_2$ $(\equiv \Delta s)$ $\widehat{P}_1 = \widehat{P}_2$ $(\equiv \Delta s)$	$\checkmark \hat{O}_1 = \hat{O}_2 \text{ or } \hat{P}_1 = \hat{P}_2 \ (\equiv \Delta s)$
	In $\triangle OAT$ and $\triangle OBT$ In $\triangle PAT$ and $\triangle PBT$	
	1. $\widehat{O}_1 = \widehat{O}_2$ $(\equiv \Delta s)$ 1. $\widehat{P}_1 = \widehat{P}_2$ $(\equiv \Delta s)$	
	2. OA = OB (radii) 2. AP = PB (give	·
	3. OT is common	II.
	$\therefore \Delta OAT \equiv \Delta OBT \qquad (S \angle S) \qquad \qquad \Delta PAT \equiv \Delta PBT (S \angle S)$	
	$AT = TB$ $(\equiv \Delta s)$	$\sqrt{\equiv \Delta s}$
		(5)
8.2.2	$\hat{OTA} = 90^{\circ}$ (properties of a kite)	✓ R
		(1)
	OR/OF	
	$\widehat{OTA} = \widehat{OTB}$ $(\Delta OTA \equiv \Delta OTB)$	✓ R
	but: $\widehat{OTA} + \widehat{OTB} = 180^{\circ}$ (\angle s on a str.line)	(1)
	\therefore $\widehat{OTA} = 90^{\circ}$	
		[15]

TOTAL/TOTAAL: 100