basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 10

PHYSICAL SCIENCES: CHEMISTRY (P2)
NOVEMBER 2019

MARKS: 150
TIME: 2 hours

This question paper consists of 13 pages and 2 data sheets.

INSTRUCTIONS AND INFORMATION

1. Write your name and class (e.g. 10A) in the appropriate spaces on the ANSWER BOOK.
2. This question paper consists of EIGHT questions. Answer ALL the questions in the ANSWER BOOK.
3. Start EACH question on a NEW page in the ANSWER BOOK.
4. Number the answers correctly according to the numbering system used in this question paper.
5. Leave ONE line between subquestions, e.g. between QUESTION 2.1 and QUESTION 2.2.
6. You may use a non-programmable calculator.
7. You may use appropriate mathematical instruments.
8. You are advised to use the attached DATA SHEETS.
9. Show ALL formulae and substitutions in ALL calculations.
10. Round off your FINAL numericafanswers to a minimum of TWO decimal places.
11. Give brief motivations, discussions, etc. where required.
12. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question numbers (1.1 to 1.10) in the ANSWER BOOK, e.g. 1.11 E. Each question has only ONE correct answer.
1.1 Nitrogen gas is an example of a/an ...

A element.
B compound.
C heterogeneous mixture.
D homogeneous mixture.
1.2 The heating curve, not drawn to scale, of a compound is shown below.

During which section(s) on the curve will the potential energy of the compound INCREASE?

A BC only
B CD only
C $\quad \mathrm{AB}$ and CD
D $A B, B C$ and $C D$
1.3 Elements in the periodic table are arranged in order of increasing ..

A mass number.

B number of protons.
C number of neutrons.
D number of nucleons.
1.4 Avogadro's number is equal to the number of ...

A atoms in 1 mole CO.
B atoms in 1 mole Br_{2}.
C molecules in 1 mole Au.
D molecules in 1 mole N_{2}.
1.5 The unbalanced equation for a chemical reaction is shown below.

$$
\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Which ONE of the following represents the coefficients of reactants and products in the BALANCED equation?

	$\mathbf{C H}_{\mathbf{4}}$	$\mathbf{O}_{\mathbf{2}}$	$\mathbf{C O}_{\mathbf{2}}$	$\mathbf{H}_{\mathbf{2}} \mathbf{O}$
A	2	1	2	1
B	1	1	2	2
C	1	2	1	2
D	2	2	1	1

1.6 A covalent bond forms ...

A between metal and non-metal atoms.
B through electron transfer.
C through sharing of electrons.
D between positive and negative ions.
1.7 The reaction between hydrogen chloride (HCl) and sodium hydroxide (NaOH) is an example of a/an \qquad reaction.

A redox
B acid-base
C precipitation
D gas forming
1.8 Consider the Aufbau diagram of an element below.

3s	11		
2p	11	11	11
2s	11		
1s	11		

The element is $\mathrm{a} / \mathrm{an} . .$.
A halogen.
B noble gas.
C alkali metal.
D alkaline-earth metal.
1.9 Which ONE of the following equations represents a precipitation reaction?

A $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
B $\quad \mathrm{NaCl}+\mathrm{HNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{HCl}$
C $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$ ooks
D $\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
1.10 The air surrounding the Earth is the ...

A biosphere.
B lithosphere.
C atmosphere.
D hydrosphere.

QUESTION 2 (Start on a new page.)

Most elements found on Earth are metals. All metals have a metallic structure.
2.1 For a metallic structure, write down the:

2.1.1 Type of particles present

2.1.2 Type of chemical bond formed between particles
2.2 In which region on the periodic table are metals found? Choose from LEFT or RIGHT.
2.3 Write down the SYMBOL of a metal which is a liquid at room temperature.
2.4 To prevent iron from rusting it is often mixed with other metals, e.g. stainless steel is a mixture of iron, chromium and nickel.
2.4.1 Is stainless steel a HOMOGENEOUS or HETEROGENEOUS mixture? Give a reason for the answer.
2.4.2 Rusting is the formation of iron(III) oxide. Write down the FORMULA of iron(III) oxide.
2.5 The physical properties of two substances, $\overline{\mathbf{A}}$ and \mathbf{B}, are shown in the table below.

SUBSTANCES	DENSITY $\left(\mathbf{g} \cdot \mathbf{c m}^{-3} \mathbf{)}\right.$	ELECTRICAL CONDUCTIVITY	THERMAL CONDUCTIVITY
A	4,94	Poor	Poor
\mathbf{B}	7,87	Good	Good

2.5.1 Which ONE of the substances, \mathbf{A} or \mathbf{B}, has the smaller mass to volume ratio? Give a reason for the answer.
2.5.2 Explain the difference between electrical conductivity and thermal conductivity.
2.5.3 Which ONE of the substances, \mathbf{A} or \mathbf{B}, is a metal? Give a reason for the answer.

QUESTION 3 (Start on a new page.)

3.1 The three isotopes of magnesium are $\mathrm{Mg}-24, \mathrm{Mg}-25$ and $\mathrm{Mg}-26$. The percentage abundance of the three isotopes is $80 \%, 10 \%$ and 10% respectively.
3.1.1 Define the term isotope.
3.1.2 Calculate the relative atomic mass of magnesium.
3.1.3 The number of protons and electrons, the mass number and the atomic number of $\mathrm{Mg}-24$ and its ion are shown in the table below.

Some of these values in the table have been omitted. Write down the letters (a-e) in the ANSWER BOOK and next to each letter the number omitted.

	NUMBER OF PROTONS	NUMBER OF ELECTRONS	MASS NUMBER	ATOMIC NUMBER
Mg	12	(a)	24	(b)
Mg^{2+}	(c)	(d)	(e)	12

3.2 The sp notation of an unown element \mathbf{X} is shown below.

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}
$$

For element \mathbf{X}, write down the:
3.2.1 Number of valence electrons
3.2.2 Period where this element is found on the periodic table
3.2.3 Highest energy level in which electrons occur
3.2.4 Symbol

Magnesium combines with element \mathbf{X} to form a compound.
3.2.5 Write down the type of bond that forms between magnesium and element \mathbf{X}.
3.2.6 Draw the Aufbau diagram for the MAGNESIUM ION.
3.2.7 Draw Lewis dot diagrams to show the bond formation between magnesium and element \mathbf{X}.

QUESTION 4 (Start on a new page.)

A section of the periodic table is shown below. Imaginary symbols are used to represent some of the elements.

	1	2	13	14	15	16	17	18
1								L
2		E				G	J	
3			D		M			
4	A			H				

4.1 Write down the IMAGINARY SYMBOL, as shown above, of the element that:
4.1.1 Is a halogen
4.1.2 Will form a cation with a charge of +2
4.1.3 Has the largest atomic radius
4.1.4 Has the highest electronegativity
4.1.5 Is a metalloid
4.1.6 Is a noble gas
4.1.7 Will form a diatomic molecule
4.1.8 Has three valence electrons
4.2 The first ionisation energy of element \mathbf{A} is $400 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$.
4.2.1 Define the term first ionisation energy.
4.2.2 The first ionisation energy of element \mathbf{A} can be represented by the following incomplete equation:
$\mathbf{A}(\mathrm{g})+400 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \rightarrow \ldots+\ldots$
Copy the equation above into the ANSWER BOOK and complete it.
4.3 Atoms of element \mathbf{J} release the most energy when gaining electrons to form negative ions.

Write down ONE word or term for the underlined phrase.
4.4 Write down the formula of the compound formed when:
4.4.1 $\quad \mathbf{D}$ combines with \mathbf{G}
4.4.2 A combines with J

QUESTION 5 (Start on a new page.)

Consider the compound $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
5.1 Write down the NAME of the compound above.
5.2 Define the term molar mass.
5.3 Calculate the following for $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$:
5.3.1 Its molar mass
5.3.2 Its percentage composition
5.3.3 The number of moles present in $85,5 \mathrm{~g}$
5.3.4 The number of aluminium atoms present in $85,5 \mathrm{~g}$
5.4 Particles of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ are bonded in a crystal lattice.

Write down the following for this crystal lattice:
5.4.1 The name
5.4.2 The particles of whichit consistsoks
5.4.3 TWO physical properties
5.5 500 g of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is dissolved in $2 \mathrm{dm}^{3}$ water.
5.5.1 Define the term concentration.
5.5.2 Calculate the concentration of the solution.

QUESTION 6 (Start on a new page.)

6.1 The first step in the extraction of zinc from zinc sulphide (ZnS) is the combustion of ZnS in oxygen. The balanced equation for the reaction is:

$$
2 \mathrm{ZnS}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ZnO}(\mathrm{~s})+2 \mathrm{SO}_{2}(\mathrm{~g})+\text { energy }
$$

6.1.1 Is the reaction above EXOTHERMIC or ENDOTHERMIC? Give a reason for the answer.

Oxygen gas consists of oxygen molecules.
6.1.2 Define the term molecule.
6.1.3 Draw the Lewis dot diagram of the oxygen molecule $\left(\mathrm{O}_{2}\right)$.

During the reaction above, 7 g ZnS reacts completely with oxygen gas.
Calculate the:
6.1.4 Number of moles of ZnS that has reacted
6.1.5 Mass O_{2} needed
6.1.6 Volume of $\mathrm{SO}_{2}(\mathrm{~g})$ producealat'STp's
6.2 Consider the incomplete equation for the chemical reaction below.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{X}+\mathrm{H}_{2}(\mathrm{~g})
$$

6.2.1 Write down the NAME of the acid in the equation above.
6.2.2 Write down the FORMULA of product \mathbf{X}.
6.2.3 Name the type of reaction illustrated above. Choose from ACIDBASE REACTION, PRECIPITATION REACTION or REDOX REACTION. Explain the answer.
6.2.4 Briefly describe a test that can be used to verify the formation of hydrogen gas during the reaction above.

QUESTION 7 (Start on a new page.)

7.1 The relationship between conductivity and the concentration of ions in two electrolytes, $\mathrm{NaCl}(\mathrm{aq})$ and $\mathrm{CaCl}_{2}(\mathrm{aq})$, of the SAME concentration are investigated.
7.1.1 Define the term electrolyte.
7.1.2 Is the water molecule POLAR or NON-POLAR? Give a reason for the answer.
7.1.3 For this investigation, write down the:
(a) Independent variable
(b) Dependant variable

The $\operatorname{NaCl}(\mathrm{aq})$ is added dropwise to distilled water in a beaker and the conductivity of the solution is measured after the addition of each drop. The experiment is repeated for the $\mathrm{CaCl}_{2}(\mathrm{aq})$. The results obtained are shown in the table below.

NUMBER OF DROPS	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Conductivity of NaC $($ aq) (mA)	0,18	0,34	0,55	$\mathrm{k} 0,74$	0,92	1,10	1,29	1,47
Conductivity of CaCl $_{2}(\mathrm{aq})$ (mA)	0,18	0,55	0,91	1,29	1,47	1,84	2,21	2,21

7.1.4 Write down a balanced equation for the dissociation of $\mathrm{NaCl}(\mathrm{s})$ in water.
7.1.5 Which electrolyte, $\operatorname{NaCl}(\mathrm{aq})$ or $\mathrm{CaCl}_{2}(\mathrm{aq})$, has the higher conductivity? Give a reason for the answer.
7.2 A learner is supplied with two unlabelled bottles containing potassium salts. She knows that one bottle contains a SULPHATE and the other a CARBONATE.

To distinguish between the two salts she adds a few drops of barium nitrate, $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$, to a solution of each salt in two separate test tubes, \mathbf{A} and \mathbf{B}, as shown below.

The learner finds that a white precipitate forms in each test tube. After the addition of nitric acid, the precipitate in test tube \mathbf{A} dissolves to release a gas, while the precipitate in test tube \mathbf{B} remains.

Write down the:
7.2.1 FORMULA of the POTASSIUM SALT in test tube \mathbf{A}
7.2.3 Balanced equation for the reaction that explains why the precipitate dissolves in test tube \mathbf{A} after the addition of nitric acid

QUESTION 8 (Start on a new page.)

The simplified diagram below represents the water cycle. Condensation and evaporation are two of the processes in the water cycle.

8.1 Define the term:
8.1.1 Condensation
8.1.2 Evaporation
8.2 Write down the name of:
8.2.1 Process A
8.2.2 Process B
8.2.3 Process C
8.2.4 Process D
8.3 Describe the term hydrosphere with reference to the different phases present.

ÉcoleBooks

DATA FOR PHYSICAL SCIENCES GRADE 10
PAPER 2 (CHEMISTRY)
GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 10 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTSITABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p^{θ}	$1,013 \times 10^{5} \mathrm{~Pa}$
Molar gas volume at STP Molêre gasvolume by STD	V_{m}	$22,4 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$
Standard temperature Standaardtemperatuur	T^{θ}	273 K
Charge on electron Lading op elektron	e	$1,6 \times 10^{-19} \mathrm{C}$
Avogadro's constant Avogadro-konstante	N_{A}	$6,02 \times 10^{23} \mathrm{~mol}^{-1}$

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n=\frac{m}{M}$	
$c=\frac{n}{V} \quad$ OR/OF $\quad c=\frac{m}{M V}$	$n=\frac{V}{V_{m}}$

