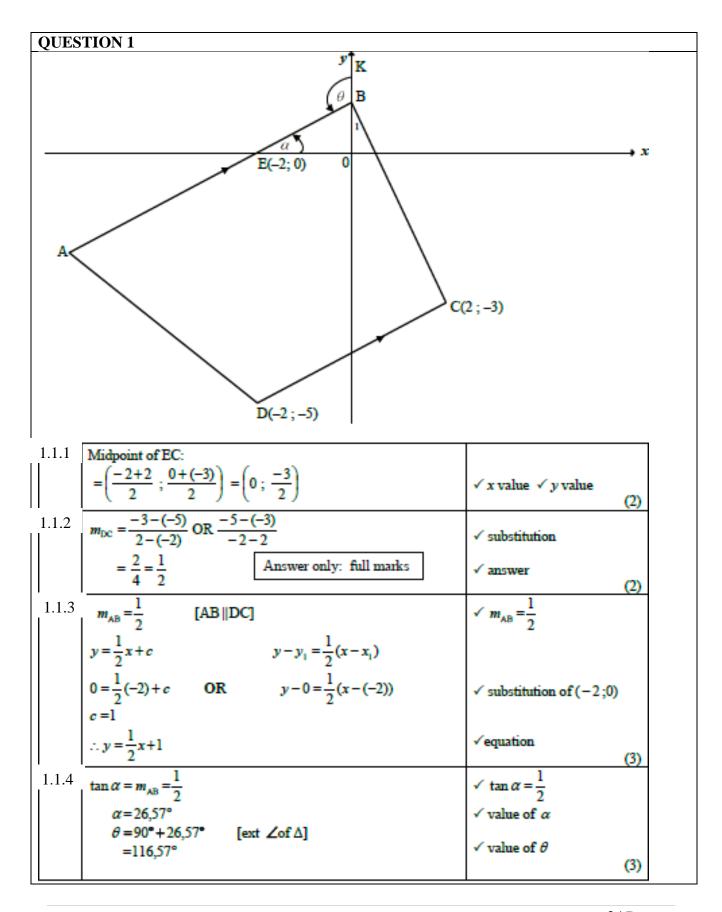


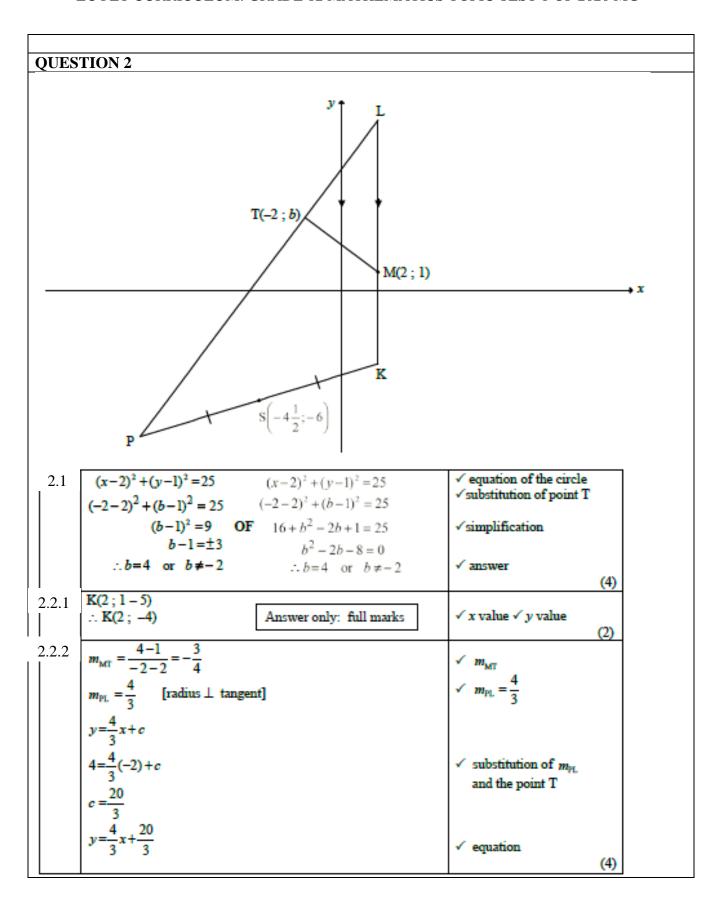
MARKS:

40

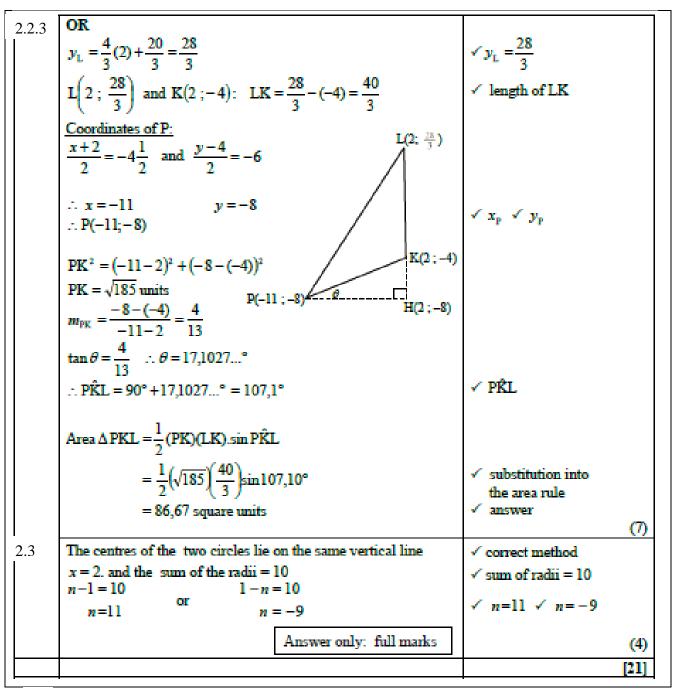
EC CURRICULUM: FET MATHEMATICS, MATHEMATICAL LITERACY AND TECHNICAL MATHEMATICS


NATIONAL SENIOR CERTIFICATE

GRADE 12


MATHEMATICS TOPIC TEST 2 OF 2020: ANALYTICAL GEOMETRY MARKING GUIDELINES

This Marking Guidelines consists of 3 pages.


EC FET CURRICULUM: GRADE 12 MATHEMATICS TOPIC TEST 1 OF 2020 MG

1.2 B(0;1)	✓ coordinates of B
$m_{BC} = \frac{1 - (-3)}{0 - 2}$ OR $m_{BC} = \frac{(-3) - 1}{2 - 0}$	
=-2 =-2	✓ m _{BC} =-2
$m_{AB} \times m_{BC} = \frac{1}{2} \times -2$	
=-1	✓ product of gradients = -1
∴ AB⊥BC	(3)
1.3.1 ABC = 90°	(3)
∴ EC is diameter [converse: ∠ in semi circle]	
∴ centre of circle= $\left(0; -\frac{3}{2}\right)$	✓ answer (1)
1.3.2 $(x-0)^2 + (y+\frac{3}{2})^2 = r^2$	✓ substitution of centre
$(-2-0)^2 + \left(0 + \frac{3}{2}\right)^2 = r^2$ OR $(2-0)^2 + \left(-3 - \left(\frac{-3}{2}\right)\right)^2 = r^2$	✓ correct substitution of E(-1; 0), B(0; 1) or
OR $(0-0)^2 + \left(1 - \left(\frac{-3}{2}\right)\right)^2 = r^2$	C(2; -3) to calculate r^2 or r
OR $r = \frac{EC}{2} = \frac{\sqrt{(-2-2)^2 + (0-(-3))^2}}{2}$	
OR $r = 1 - (-\frac{3}{2})$	\checkmark value of r^2 or r
$\therefore r^2 = \frac{25}{4} \text{ or } r = \frac{5}{2}$	
$x^2 + \left(y + \frac{3}{2}\right)^2 = \frac{25}{4}$	✓ equation (4)
	[18]

EC FET CURRICULUM: GRADE 12 MATHEMATICS TOPIC TEST 1 OF 2020 MG

Г		
	OR 4-1 3	
	$m_{\rm MT} = \frac{4-1}{-2-2} = -\frac{3}{4}$	✓ m _{MT}
	$m_{\rm PL} = \frac{4}{3}$ [radius \perp tangent]	$\sqrt{m_{MT}}$ $\sqrt{m_{PL}} = \frac{4}{3}$
	$y - y_1 = \frac{4}{3}(x - x_1)$	
	$y-4=\frac{4}{3}(x+2)$	✓ substitution of m _{PL} and
	$y = \frac{4}{3}x + \frac{20}{3}$	the point T
	OR	✓ equation (4)
		(4)
	$P(-11; -8)$ $m_{\text{PL}} = \frac{4 - (-8)}{-2 - (-11)}$	✓ coordinates of P
	- (- 4	
	$=\frac{4}{3}$	$\sqrt{m_{\rm PL}} = \frac{4}{3}$
	$y = \frac{4}{3}x + c$. 3
	$-8 = \frac{4}{3}(-11) + c$	
	$c = \frac{20}{3}$	✓ substitution of m _{PL} and the point P or T
	$y = \frac{4}{3}x + \frac{20}{3}$	
		✓ equation (4)
2.2.3	$y_L = \frac{4}{3}(2) + \frac{20}{3} = \frac{28}{3}$	$\checkmark y_L = \frac{28}{3}$
	$L\left(2; \frac{28}{3}\right)$ and $K(2; -4)$: $LK = \frac{28}{3} - (-4) = \frac{40}{3}$	✓ length of LK
	$\frac{\text{Coordinates of P:}}{\frac{x+2}{2} = -4\frac{1}{2} \text{ and } \frac{y-4}{2} = -6$	
	$\frac{3}{2} = -4\frac{1}{2}$ and $\frac{3}{2} = -6$	
	$\therefore x = -11 \qquad y = -8$	✓ x _p ✓ y _p
	∴ P(-11;-8) ⊥ height (PH) = 2 - (-11) = 13	✓ length of ⊥ height
	Area \triangle PKL = $\frac{1}{2}$ (LK)(PH)	
	$= \frac{1}{2} \left(\frac{40}{3} \right) (13) P(-11; -8) \qquad H(2; -8)$	✓ substitution into
	$= \frac{260}{3} \text{OR} 86,67 \text{ square units}$	the area formula ✓ answer
	3	answer (7)

TOTAL: 40