SENIOR SECONDARY INTERVENTION PROGRAMME 2013

GRADE 12

MATHEMATICS

TEACHER NOTES

The SSIP is supported by

TABLE OF CONTENTS

TEACHER NOTES

SESSION	TOPIC	PAGE
1	Topic 1:Logarithms	3 – 13
	Topic 2: Factorisation of 3 rd degree polynomials	
2	Sequences & Series	14 – 25
3	Financial Maths	26 – 31
4	Financial Maths	32 – 39
5	Trigonometry Revision	40 – 47
6	Trigonometry	48 – 52
7	Trigonometry	53 – 59
8	Consolidation:	60 - 65
	Topic 1: Number patters, sequences and series,	
	Topic 2: Financial mathematics & Trigonometry	
9	9 Consolidation:	
	Topic 1: Number patterns, sequences and series, Topic 2:	
	Financial mathematics	
10	Transformations	76 – 83
11	Functions and graphs 84 -	
12	Inverse graphs	91 – 97
13	Calculus	98 – 111
14	Topic 1: Calculus Graphs	112 - 123
	Topic 2: Linear Programming	

MATHEMATICS GRADE 12 SESSION 1 (TEACHER NOTES)

TOPIC 1: LOGARITHMS

Ι

Teacher Note: Changing from exponential to logarithmic form in real world problems is the most important concept in this section. This concept is particularly useful in Financial Maths when learners are required to solve for n.

LESSON OVERVIEW

1. Introduction session: 5 minutes

2.	Typical exam questions:	
	Question 1:	10 minutes
	Question 2:	5 minutes
	Question 3:	10 minutes

3. Discussion of solutions: 30 minutes

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1 (Used with permission from Maths Grade 12 Allcopy Mind Action Series textbook)

A colony of an endangered species originally numbering 1000 was predicted to have a population N after *t* years given by the equation $N = 1000(0,9)^{t}$.

(a)	Estimate the population after 1 year.	(2)
· · ·		()

- (b) Estimate the population after 2 years.
- (c) After how many years will the population decrease to 200?

QUESTION 2

(DoE Nov 2008)

R1 570 is invested at 12% per annum. compound interest. After how many years will the investment be worth R23 000? [4]

QUESTION 3 (Link to inverse graphs)

Given: $g(x) = \left(\frac{1}{2}\right)^x$

- (a) Write the inverse of g in the form $g^{-1}(x) = \dots$ (2)
- (b) Sketch the graph of g^{-1} (2)
- (c) Determine graphically the values of x for which $\log_{\frac{1}{2}} x < 0$

[5]

(1)

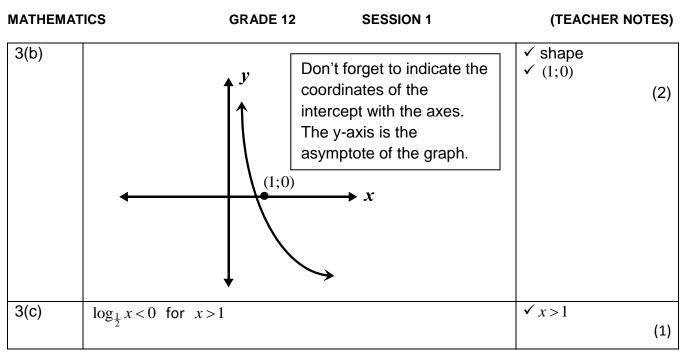
(2)

(5)

[9]

MATHEMATICS

GRADE 12


SESSION 1

(TEACHER NOTES)

SECTION B: SOLUTIONS AND HINTS TO SECTION A

1(a)	At $t=0$,	$\checkmark t = 0$
. (0.)	$N = 50.2^{\circ} = 50$ "super-bugs"	\checkmark N = 50. 2 ⁰ = 50
		(2)
1(b)	At $t=5$,	✓ N = 50.2 ⁵
~ /	$N = 50.2^5 = 1600$ "super-bugs"	$\checkmark IN = 30.2$ $\checkmark = 1600$
		(2)
1(c)	Here N=10 000	$\checkmark 10\ 000 = 50.\ 2^t$
	$N = 50.2^{t}$	$\checkmark 200 = 2^t$
	$\therefore 10\ 000 = 50.\ 2^t$	$\checkmark 200 = 2$ $\checkmark \log_2 200 = t$
	$\therefore 200 = 2^t$	\checkmark t = 7,64385619
		\checkmark $t \approx 8$ days
	$\therefore \log_2 200 = t$	(5)
	$\therefore t = 7,64385619$	
2	$\therefore t \approx 8 \text{ days}$	 ✓ formula
2	$\mathbf{A} = \mathbf{P}(1+i)^n$	 ✓ substitution
	$\therefore 23000 = 1570(1+0,12)^n$	\checkmark apply log function
	$\therefore \frac{23000}{1570} = (1,12)^n$ The 8 months was calculated	✓ answer
	1570 calculated	(4)
	$\therefore 14,64968153=(1,12)^n$ by multiplying the decimal	
	$\therefore \log_{1,12} 14,64968153=n$ 0,68701789 by 12	
	$\therefore n = 23,68701789$ years	
	$\therefore n = 23$ years 8 months	
3(a)	$(1)^x$	$(1)^{y}$
	$y = \left(\frac{1}{2}\right)$ Remember that the inverse of a	$\checkmark x = \left(\frac{1}{2}\right)^{3}$
	$(1)^y$ graph is determined by	
	$x = \left(\frac{1}{2}\right)^{y}$ interchanging x and y in the equation of the original graph	$\checkmark g^{-1}(x) = \log_{\frac{1}{2}} x$
	equation of the original graph. $\therefore \log_{\frac{1}{2}} x = y$	-
		(2)
	$\therefore g^{-1}(x) = \log_{\frac{1}{2}} x$	

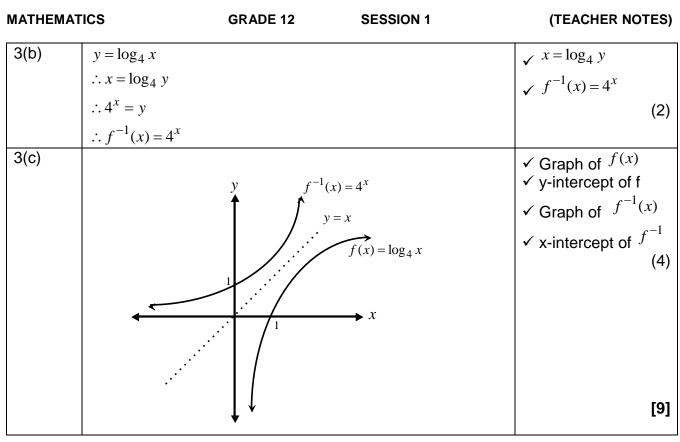
SECTION C: HOMEWORK

QUESTION 1 (Used with permission from Maths Grade 12 Mind Action Series textbook) Archaeologists use a specific formula when determining the age of fossils. This formula is the where P is the percentage of carbon-14 carbon dating formula and is given by: P =remaining in the fossils after n years. Calculate the approximate age of a certain fossil discovered if the percentage of carbon-14 in the fossil is 12,5%. [4] **QUESTION 2** (Used with permission from Maths Grade 12 Mind Action Series textbook) (a) Determine how many years it would take for the value of a car to depreciate to 50% of its original value if the rate of depreciation, based on the reducing balance method, is 8% per annum. (3) (b) How long will it take for an amount of R50 000 to double if the interest rate is 18% per annum compounded monthly? (6) [9] **QUESTION 3** The graph of $f: x \rightarrow \log_a x$ passes through the point (16; 2). (a) Calculate the value of a. (3) Write down the equation of the inverse in the form $f^{-1}(x) = \dots$ (b) (2) Sketch the graphs of f and f^{-1} on the same set of axes. (C) (4)

[9]

MATHEMATICS

GRADE 12


SESSION 1

(TEACHER NOTES)

SECTION D: SOLUTIONS TO HOMEWORK

1	$0,125 = \left(\frac{1}{2}\right)^{\frac{n}{5700}}$ $\therefore 0,125 = (0,5)^{\frac{n}{5700}}$ $\therefore \log_{0,5} 0,125 = \frac{n}{5700}$ $\therefore 3 = \frac{n}{5700}$ $\therefore n = 17100 \text{ years}$	✓ 0,125 ✓ 0,125 = $(0,5)^{\frac{n}{5700}}$ ✓ $\log_{0,5} 0,125 = \frac{n}{5700}$ ✓ $n = 17100$ years [4]
2(a)	$0,5x = x(1-0,08)^{n}$ $\therefore 0,5 = 0,92^{n}$ $\therefore \log_{0,92} 0,5 = n$ $\therefore n = 8,312950414$ 8 years and 4 months	 ✓ correct substitution into formula ✓ use of logs ✓ answer (3)
2(b)	A = P $\left(1 + \frac{i}{12}\right)^{12n}$ 100 000 = 50 000 $\left(1 + \frac{0.18}{12}\right)^{12n}$ $\therefore 2 = (1,015)^{12n}$ $\therefore \log_{1,015} 2 = 12n$ $\therefore 12n = 46,55552563$ $\therefore n = 3,879627136$ 3 years 11 months	✓ 12n ✓ $\frac{0,18}{12}$ ✓ 2 = (1,015) ¹²ⁿ ✓ $\log_{1,015} 2 = 12n$ ✓ $n = 3,879627136$ ✓ 3 years 11 months (6) [9]
3(a)	$\therefore 2 = \log_a 16$ $\therefore a^2 = 16$ $\therefore a = 4$	$\checkmark 2 = \log_a 16$ $\checkmark a^2 = 16$ $\checkmark a = 4$ (3)

Ι

Page 7 of 123

MATHEMATICS

GRADE 12

SESSION 1

(TEACHER NOTES)

TOPIC 2: FACTORISATION OF THIRD DEGREE POLYNOMIALS

Teacher Note: The factorisation of third degree polynomials is essential when sketching the graphs of cubic functions. The *x*-intercepts of a cubic graph can be determined by factorising cubic polynomials.

LESSON OVERVIEW

- 1. Introduction session: 5 minutes
- Typical exam questions: Question 1: 20 minutes Question 2: 10 minutes
 Discussion of actuations: 25 minutes
- 3. Discussion of solutions: 25 minutes

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1

(a)

Solve the following equations:

 $x^3 - x^2 - 22x + 40 = 0$

(4)

- (b) $x^3 + 9x^2 + 26x + 24 = 0$ (4)
- (c) $3x^3 7x^2 + 4 = 0$ (4)
- (d) $4x^3 19x 15 = 0$ (4)
- (e) $x^3 x^2 4x + 4 = 0$ (4)
- [20]

QUESTION 2

Solve the following equations:

- (a) $x^3 27 = 0$ (4)
- (b) $x^3 + 27 = 0$ (4)

MATHEMATICS	GRADE 12	SESSION 1

(TEACHER NOTES)

SECTION B: SOLUTIONS AND HINTS TO SECTION A

Ι

1(a)	$x^3 - x^2 - 22x + 40 = 0$	\checkmark (x-2)
Π(α)		$\checkmark (x-2)$ $\checkmark (x^2+x-20)$
	$\therefore (x-2)(x^2+x-20) = 0$	$\checkmark (x + x - 20)$ $\checkmark (x + 5)(x - 4)$
	$\therefore (x-2)(x+5)(x-4) = 0$	$\checkmark (x+3)(x-4)$ $\checkmark x=2 \text{ or } x=-5 \text{ or } x=4$
	$\therefore x = 2$ or $x = -5$ or $x = 4$	(4)
1(b)	$x^3 + 9x^2 + 26x + 24 = 0$	\checkmark (x+3)
	$\therefore (x+3)(x^2+6x+8) = 0$	$\checkmark (x^2 + 6x + 8)$
	$\therefore (x+3)(x+4)(x+2) = 0$	\checkmark (x+4)(x+2)
	$\therefore x = -3$ or $x = -4$ or $x = -2$	\checkmark x = -3 or x = -4 or x = -2 (4)
1(c)	$3x^3 - 7x^2 + 4 = 0$	\checkmark (x-1)
	$\therefore (x-1)(3x^2-4x-4)=0$	$\checkmark (3x^2 - 4x - 4)$
	$\therefore (x-1)(3x+2)(x-2) = 0$	$\checkmark (3x+2)(x-2)$
	$\therefore x = 1$ or $x = -\frac{2}{3}$ or $x = 2$	\checkmark x=1 or x=- $\frac{2}{3}$ or x=2
	3	(4)
1(d)	$4x^3 - 19x - 15 = 0$	\checkmark (x+1)
	$\therefore (x+1)(4x^2 - 4x - 15) = 0$	$\checkmark (4x^2 - 4x - 15)$
	$\therefore (x+1)(2x-5)(2x+3) = 0$	$\checkmark (2x-5)(2x+3)$
	$\therefore x = -1 \text{ or } x = \frac{5}{2} \text{ or } x = -\frac{3}{2}$	✓ $x = -1$ or $x = \frac{5}{2}$ or $x = -\frac{3}{2}$
	2 2	(4)
1(e)	$x^3 - x^2 - 4x + 4 = 0$	✓ (<i>x</i> −1)
	$\therefore x^2(x-1) - 4(x-1) = 0$	\checkmark (x ² -4)
	∴ $(x-1)(x^2-4) = 0$	$\checkmark (x+2)(x-2)$
		\checkmark x=1 or x=-2 or x=2
	$\therefore (x-1)(x+2)(x-2) = 0$	(4)
	$\therefore x = 1$ or $x = -2$ or $x = 2$	

MATHEMAT	ICS	GRADE 12	SESSION 1	(TEACHER NOTES)
2(a)	$x^{3} - 27 = 0$ $\therefore (x - 3)(x^{2} + 3)(x^{$	-3x+9) = 0 $x^{2}+3x+9 = 0$ $x = \frac{-3 \pm \sqrt{(3)^{2}-4(1)(9)}}{2(1)}$ $x = \frac{-3 \pm \sqrt{-27}}{2}$ non-real solution		$(x-3)(x^2+3x+9) = 0$ $x = 3$ $x = \frac{-3 \pm \sqrt{-27}}{2}$ $x = 3 \text{ is the only real solution}$ (4) (4) (4)
			v	$\mathbf{v} x = 3$
2(b)		$x^2 - 3x + 9 = 0$	(1)(9) Books	$ \begin{aligned} x &= -3 \\ x &= -3 \\ x &= -\frac{3 \pm \sqrt{-27}}{2} \\ x &= -3 \text{ is the only real solution} \\ (4) \end{aligned} $

Download mor GAUTENG DEPARTME	e resources li	ke this on ECO	DLEBOOKS - COM INTERVENTION PROGRAMME
MATHEMATICS	GRADE 12	SESSION 1	(TEACHER NOTES)
SECTION C: HOM	EWORK		

QUESTION 1

I

Solve the following equations, rounded off to two decimal places where appropriate:

		[]
(e)	$x^3 - 5x^2 - 3x + 9 = 0$	(4) [23]
(d)	$-x^3 + 4x^2 - 2x - 4 = 0$	(6)
(c)	$2x^3 - 5x^2 - 4x + 3 = 0$	(4)
(b)	$x^3 - 2x^2 + 16 = 0$	(5)
(a)	$x^3 - 6x^2 - x - 6 = 0$	(4)

QUESTION 2

(a)	Determine the coordinates of	the x-intercepts of the graph of	
	$f(x) = x^3 - 8x^2 + 19x - 12$	ECOIEBOOKS	(6)

(b) Show that the graph of $f(x) = x^3 - x^2 - x - 2$ cuts the *x*-axis at one point only. (5) [11]

SECTION D: SOLUTIONS TO HOMEWORK

1(a)	$x^3 - 6x^2 - x - 6 = 0$	✓ (<i>x</i> −1)
	∴ (x-1)(x - 3x - 6) = 0 ∴ (x-1)(x-6)(x+1) = 0	$\checkmark (x^2 - 5x - 6)$ $\checkmark (x - 6)(x + 1)$ $\checkmark x = \pm 1 \text{ or } x = 6$
	$\therefore x = \pm 1$ or $x = 6$	(4)

MATHEMA	TICS	GRADE 12	SESSION 1	(TEACHER NOTES)
1(b)		$6 = 0$ $x = -4x + 8 = 0$ $x = \frac{-(-4) \pm \sqrt{(-4)}}{2(1)}$ $x = \frac{4 \pm \sqrt{-16}}{2}$ non-real	$\frac{\sqrt{(1)^2 - 4(1)(8)}}{\sqrt{(1)^2 - 4(1)(8)}}$	$(x+2)$ $(x^{2}-4x+8)$ $x = -2$ $x = \frac{4 \pm \sqrt{-16}}{2}$ $x = -2 \text{ is the only real solution}$ (5)
1(c)	$\therefore (x+1)(2x)$		√ √	$(x+1)$ $(2x^{2}-7x+3)$ $(2x-1)(x-3)$ $x = -1 \text{ or } x = \frac{1}{2} \text{ or } x = 3$ (4)
1(d)	$-x^{3} + 4x^{2} - \frac{1}{2} \cdot x^{3} - 4x^{2} - \frac{1}{2} \cdot \frac{1}{2} \cdot$		$\frac{\sqrt{2}}{1)^2 - 4(1)(-2)} \sqrt{2}$	$ \begin{array}{c} (x-2) \\ (x^2-2x-2) \\ x=2 \end{array} $
1(e)	$\therefore (x+1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-$	(-6x+9) = 0 $(-3)^2 = 0$ $(-3)^2 = 3$	✓ ✓ (2 [2	3]
2(a)	$\therefore (x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)$	(-7x+12) = 0 -4)(x-3) = 0 x = 4 or x = 3		$0 = x^{3} - 8x^{2} + 19x - 12$ (x-1) (x-1) (x-4)(x-3) x = 1 or x = 4 or x = 3 (1;0) (4;0) (3;0)

MATHEMATI	CS	GRADE 12	SESSION 1	(TEACHER NOTES)
	$0 = x^3 - x^2 - \frac{1}{x^2} - $	$x = \frac{-1 \pm \sqrt{(1)^2 - 1}}{2(1)}$	<u>4(1)(1)</u> ✓	$(x-2)$ $(x^{2}+x+1)$ $x=2$ $x = \frac{-1 \pm \sqrt{-3}}{2}$ $x = 2 \text{ is the only x intercent}$
		$x = \frac{-1 \pm \sqrt{-3}}{2}$ non-real		x = 2 is the only <i>x</i> -intercept (5)

ÉcoleBooks

Ι

MATHEMATICS

GRADE 12

SESSION 2

(TEACHER NOTES)

TOPIC 1: SEQUENCES AND SERIES

Teacher Note: Sequences and series is an exciting part of the curriculum. Make sure the learners know the difference between arithmetic and geometric sequences. They must also know the relevant formulae for finding specific terms and the sum of a certain number of terms. The sum to infinity is an important concept, as well as real world applications of the formulae.

LESSON OVERVIEW

- 1. Introduction session: 5 minutes
- 2. Typical exam questions:

Question 1:	10 minutes
Question 2:	10 minutes
Question 3:	10 minutes

3. Discussion of solutions: 25 minutes

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1

(a).	Consider the sequence $-2;3;8;13;18;23;28;33;38;$ (1) Determine the 100 th term.	(2)
	(2) Determine the sum of the first 100 terms.	(2)
(b)	The 13 th and 7 th terms of an arithmetic sequence are 15 and 51 respectively. Which term of the sequence is equal to -21	(6) [10]

QUESTION 2

In a geometric sequence, the 6^{th} term is 243 and the 3^{rd} term is 72. Determine:

(a) the constant ratio.(4)(b) the sum of the first 10 terms.(4)[8]

MATHEMATICS	GRADE 12	SESSION 2	(TEACHER NOTES)
QUESTION 3	(DoE Nov 2008 Paper	1)	

Consider the sequence: $\frac{1}{2}$; 4; $\frac{1}{4}$; 7; $\frac{1}{8}$; 10; ...

- (a) If the pattern continues in the same way, write down the next TWO terms in the sequence. (2)
- (b) Calculate the sum of the first 50 terms of the sequence.

QUESTION 4

Ι

(a) Calculate the value of
$$\sum_{k=1}^{100} (2k-1)$$
 (4)

(b) Write the following series in sigma notation: 2+5+8+11+14+17 (4)

(c) Calculate the value of
$$\sum_{k=1}^{10} 5\left(\frac{1}{5}\right)^{k-1}$$
 (4)

(d) Calculate the value of *n* if
$$\sum_{k=1}^{n} 2^k = 2046$$
 (5)

(e) Calculate:
$$\sum_{k=1}^{\infty} 5\left(\frac{1}{5}\right)^{k-1}$$
 (5)
[22]

QUESTION 5

Given the geometric series: $8x^2 + 4x^3 + 2x^4 + ...$

- (a) Determine the n^{th} term of the series.
- (b) For what value(s) of x will the series converge? (2)
- (c) Calculate the sum of the series to infinity if $x = \frac{3}{2}$. (3)

SECTION B: SOLUTIONS AND HINTS TO SECTION A

1(a)(1)	$\mathbf{T}_n = a + (n-1)d$	$\checkmark T_n = a + (n-1)d$
	$\therefore T_{100} = -2 + (100 - 1)(5) = 493$	✓ $T_{100} = 493$
		(2)

(7) [9]

(3)

MATHEMA	TICS	GRADE 12	SESSION 2	(TEACHER NO	TES)
1(a)(2)	$\mathbf{S}_n = \frac{n}{2} \left[2a + (n-1) \right]$	d]		$\checkmark S_n = \frac{n}{2} [2a + (n-1)d]$	
	$\therefore S_{100} = \frac{100}{2} [2(-2)]$	(100-1)(5)		✓ $T_{100} = 493$	(2)
	$\therefore S_{100} = 24550$				
1(b)	$T_{13} = 15$ ∴ a + 12d = 15 ∴ a + 12d = 15 ∴ a + 6d = 51 ∴ 6d = -36 ∴ d = -6 ∴ a + 12(-6) = 15	A	1 6 <i>d</i> = 51	✓ $a+12d = 15$ ✓ $a+6d = 51$ ✓ $d = -6$ ✓ $a = 87$ ✓ $87 + (n-1)(-6) = -21$ ✓ $n = 19$	(6)
	$\therefore a - 72 = 15$ $\therefore a = 87$ $T_n = -21$ $\therefore a + (n-1)d = -2$ $\therefore 87 + (n-1)(-6)$				
	∴ 87 - 6n + 6 = -2 ∴ n = 19 ∴ T ₁₉ = -21	21			
			coleBooks		[10]
2(a)	$T_{6} = 243 AN a.r^{5} = 243 A a.r^{5} = 243 A a.r^{2} = 72 B ∴ r^{3} = \frac{27}{8} A ∴ r = \frac{3}{2}$	-		✓ $a.r^5 = 243$ ✓ $a.r^2 = 72$ ✓ $r^3 = \frac{27}{8}$ ✓ $r = \frac{3}{2}$	(4)
	$\therefore r = \frac{1}{2}$				
2(b)	$\therefore a \left(\frac{3}{2}\right)^5 = 243$ $\therefore a = 32$			$\checkmark a \left(\frac{3}{2}\right)^5 = 243$ $\checkmark a = 32$ $\checkmark S_{10} = \frac{32 \left(\left(\frac{3}{2}\right)^{10} - 1\right)}{\frac{3}{2} - 1}$	
	$\therefore \mathbf{S}_{10} = \frac{32\left(\left(\frac{3}{2}\right)^{10}}{\frac{3}{2}-1}$	$\left(\frac{1}{-1} \right) = 3626,5625$		✓ $S_{10} = \frac{32\left(\left(\frac{3}{2}\right) - 1\right)}{\frac{3}{2} - 1}$ ✓ answer	(4) [8]

education DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM Page 16 of 123

MATHEMATICS

Ι

GRADE 12

SESSION 2

(TEACHER NOTES)

3(a)	$\frac{1}{16}$; 13	✓ ✓ answers	(2)
3(b)	$S_{50} = 25 \text{ terms of } 1^{\text{st}} \text{ sequence } + 25 \text{ terms of } 2^{\text{nd}} \text{ sequence}$ $S_{50} = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \text{to } 25 \text{ terms}\right) + \left(4 + 7 + 10 + 13 + \dots \text{to } 25 \text{ terms}\right)$ $S_{50} = \frac{\frac{1}{2}\left(\left(\frac{1}{2}\right)^{25} - 1\right)}{\frac{1}{2} - 1} + \frac{25}{2}\left[2(4) + 24(3)\right]$ $S_{50} = 0.9999999 + 1000$ $S_{50} = 1001,00$	✓ separating into an arithmetic and geometric series ✓✓ $\frac{\frac{1}{2}\left(\left(\frac{1}{2}\right)^{25}-1\right)}{\frac{1}{2}-1}$ ✓ correct formulae ✓✓ $\frac{25}{2}[2(4)+24(3)]$ ✓ answer	(7)

[9]

4(a)	$\sum_{k=1}^{100} (2k-1) = [2(1)-1] + [2(2)-1] + [2(3)-1] + [2(4)-1] + \dots + [2(100)-1]$ $= 1+3+5+7+\dots + 199$ We can use the formula $S_n = \frac{n}{2}[a+l]$ to calculate the	 ✓ expanding ✓ correct formula ✓ substitution ✓ answer 	(4)
	sum: $S_{100} = \frac{100}{2} [1+199]$ $\therefore S_{100} = 10000$		
4(b)	The series is arithmetic. There are also 6 terms in the series. a=2 $d=3$ $n=6We can determine the general term as follows:T_n = a + (n-1)d\therefore T_n = 2 + (n-1)(3)\therefore T_n = 2n-3\therefore T_n = 3n-1We can now write the series in sigma notation as follows:\sum_{n=1}^{6} (3n-1)$	✓ correct formula ✓ $T_n = 3n - 1$ ✓ $n = 6$ ✓ $\sum_{n=1}^{6} (3n - 1)$	(4)
4(c)	$\sum_{k=1}^{10} 5\left(\frac{1}{5}\right)^{k-1} = 5\left(\frac{1}{5}\right)^0 + 5\left(\frac{1}{5}\right)^1 + 5\left(\frac{1}{5}\right)^2 + \dots + 5\left(\frac{1}{5}\right)^9$ $= 5\left(\frac{1}{5}\right)^0 + 5\left(\frac{1}{5}\right)^1 + 5\left(\frac{1}{5}\right)^2 + \dots + 5\left(\frac{1}{5}\right)^9$ $= 5 + 1 + \frac{1}{5} + \dots + \frac{1}{5^8}$	 ✓ expanding ✓ correct formula ✓ substitution ✓ answer 	(4)

IATHEMA	GRADE 12	SESSION 2	(TEACHER NOTE
	This is a geometric se $a = 5$ and $r = \frac{1}{5}$ $S_{10} = \frac{5\left[1 - \left(\frac{1}{5}\right)^{10}\right]}{1 - \frac{1}{5}} = \frac{25}{4}\left[1\right]$		
۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	$\sum_{i=1}^{n} 2^{k} = 2^{1} + 2^{2} + 2^{3} + \dots$ $= 2 + 4 + 8 + 16 + \dots$ This is a geometric series with: $a = 2 \qquad r = 2 \qquad S_{n} = 204$ $S_{n} = \frac{a(r^{n} - 1)}{r - 1}$ $2.2046 = \frac{(2)(2^{n} - 1)}{2 - 1}$ $2.2046 = (2)(2^{n} - 1)$ $1.1023 = 2^{n} - 1$ $1.1024 = 2^{n}$ $2.10 = 2^{n}$ n = 10	6 coleBooks	✓ expanding ✓ correct formula ✓ $2046 = \frac{(2)(2^n - 1)}{2 - 1}$ ✓ $1024 = 2^n$ ✓ $n = 10$
= = = !\ F	$\sum_{i=1}^{\infty} 5\left(\frac{1}{5}\right)^{k-1} + 5\left(\frac{1}{5}\right)^{2-1} + 5\left(\frac{1}{5}\right)^{3-1} + \dots + 5\left(\frac{1}{5}\right)^{2} + \dots + 5\left(\frac{1}{5}$	th the constant ratio	 ✓ expanding ✓ stating that -1 < r < 1 ✓ correct formula ✓ substitution ✓ answer

education DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM Page 18 of 123

MATHEMATICS		GRADE 12	SESSION 2	(TEACHER N	OTES)
5(a)	$T_n = (8x^3) \left(\frac{1}{2}x\right)^{n-1}$			✓ correct formula ✓ $a - 8x^3$	
	<i>"</i> (2)			$\checkmark a = 8x^3$ $\checkmark r = \frac{1}{2}x$	(3)
5(b)	$-1 < \frac{x}{2} < 1$			$\checkmark -1 < \frac{x}{2} < 1$ $\checkmark -2 < x < 2$	
	= -2 < x < 2			$\checkmark -2 < x < 2$	(2)
5(c)	$\mathbf{S}_{\infty} = \frac{a}{1-r}$			 ✓ correct formula ✓ substitution ✓ answer 	
	$\therefore \mathbf{S}_{\infty} = \frac{8x^2}{1 - \frac{x}{2}}$				(3)
	$\therefore \mathbf{S}_{\infty} = \frac{8\left(\frac{3}{2}\right)^2}{1 - \frac{1}{2}\left(\frac{3}{2}\right)}$				
	$\therefore S_{\infty} = 72$				[8]

SECTION C: HOMEWORK

QUESTION 1

Ι

The 19th term of an arithmetic sequence is 11, while the 31st term is 5.

(a)	Determine the first three terms of the sequence.	(5)
(b)	Which term of the sequence is equal to -29 ?	(3) [8]

QUESTION 2

<u>.</u>	1	2	3	4	180
Given:	$\frac{1}{181}$ +	$-\frac{1}{181}$	$+\frac{1}{181}$	$+\frac{1}{181}+$	+ 181

- (a) Calculate the sum of the given series.
- (b) Hence calculate the sum of the following series:

$$\left(\frac{1}{2}\right) + \left(\frac{1}{3} + \frac{2}{3}\right) + \left(\frac{1}{4} + \frac{2}{4} + \frac{3}{4}\right) + \dots + \left(\frac{1}{181} + \frac{2}{181} + \dots + \frac{180}{181}\right)$$
(4)

[8]

(4)

Dow		ad more resources like this on ECOLEBOOKS.CO ENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION	
	MATH	IEMATICS GRADE 12 SESSION 2 (T	EACHER NOTES)
	QUE	STION 3 (DoE Feb 2009 Paper 1)	
	The f	following is an arithmetic sequence: $1-p$; $2p-3$; $p+5$;	
	(a)	Calculate the value of <i>p</i> .	(3)
	(b)	Write down the value of:	
		(1) The first term of the sequence.	(1)
		(2) The common difference.	2)
	(C)	Explain why none of the numbers in this arithmetic sequence are perfec	t squares. (2) [8]

QUESTION 4

In a geometric sequence in which all terms are positive, the sixth term is $\sqrt{3}$ and the eighth term is $\sqrt{27}$. Determine the first term and constant ratio. [7]

QUESTION 5

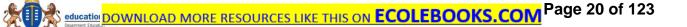
(a) Determine *n* if
$$\sum_{r=1}^{n} (6r-1) = 456$$
 (7)

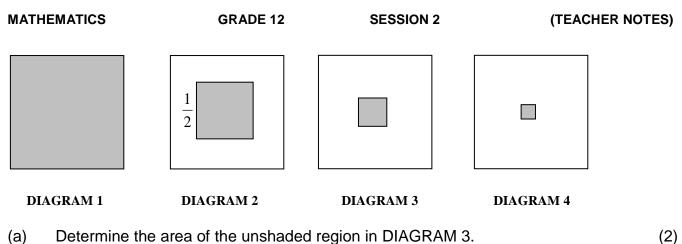
(b) Prove that
$$\sum_{k=3}^{n} (2k-1)n = n^3 - 4n$$
. EcoleBooks (6)

QUESTION 6

Consider the series $\sum_{n=1}^{\infty} 2(\frac{1}{2}x)^n$

(a) For which values of x will the series converge? (3) (b) If $x = \frac{1}{2}$, calculate the sum to infinity of this series. (3)


QUESTION 7


(DoE Feb 2009 Paper 1)

[13]

[6]

A sequence of squares, each having side 1, is drawn as shown on the following page. The first square is shaded, and the length of the side of each shaded square is half the length of the side of the shaded square in the previous diagram.

(b) What is the sum of the areas of the unshaded regions on the first seven squares? (5)

[7]

[3]

QUESTION 8

Ι

A plant grows 1,5 m in 1st year. Its growth each year thereafter is $\frac{2}{3}$ of its growth in the previous year. What is the greatest height it can reach?

SOLUTIONS TO HOMEWORK: SEQUENCES & SERIES (A)

1(a)	$T_{19} = a + 18d = 11$		✓ $T_{19} = a + 18d = 11$	
	1)	ÉcoleBooks	✓ $T_{31} = a + 30d = 5$	
	$T_{31} = a + 30d = 5$		• $I_{31} = a + 30a = 5$	
	$\therefore 12d = -6$		$\checkmark d = -\frac{1}{2}$	
	. , 1			
	$\therefore d = -\frac{1}{2}$	100.10^{1} 10	$\checkmark a = 20$	
	-1	$\therefore 20; 19\frac{1}{2}; 19$	✓ sequence	
	$\therefore a + 18(\frac{-1}{2}) = 11$	_		(5)
	$\therefore a = 20^{2}$			
1(b)			✓ Substitution into	
1(b)	$20 + (n-1)\left(-\frac{1}{2}\right) = -29$		formula	
			\checkmark equating to -29	
	(1) (1)		\checkmark n=99	
	$\therefore (n-1)\left(-\frac{1}{2}\right) = -49$		· <i>n</i> - <i>y</i>	(3)
	$\therefore n-1=98$			(0)
	$\therefore n = 99$			
	$\therefore T_{99} = -29$			[8]
				r., 1

MATHEMAT	ICS GRADE 12	SESSION 2	(TEACHER NOTES)
2(a)	$\frac{1}{181} + \frac{2}{181} + \frac{3}{181} + \frac{4}{181} + \dots + \frac{180}{181}$ $a = \frac{1}{181} d = \frac{1}{181} n = 180$ $S_{180} = \frac{180}{2} \left[2 \left(\frac{1}{181} \right) + (179) \frac{1}{181} \right] = 90 [1] = 100$		✓ correct <i>a</i> and <i>d</i> ✓ correct <i>n</i> ✓ S _n formula ✓ correct answer (4)
2(b)	$\left(\frac{1}{2}\right) + \left(\frac{1}{3} + \frac{2}{3}\right) + \left(\frac{1}{4} + \frac{2}{4} + \frac{3}{4}\right) + \dots + \left(\frac{1}{181} + \frac{1}{2}\right) = \frac{1}{2} - $	101 101)	✓ simplifying fractions to get series ✓ $\frac{1}{2}$ + $(n-1)\frac{1}{2}$ = 90 ✓ $n = 180$ ✓ substitution into S _n formula to get 8145 (4)

	11.	
3(a)	(2p-3)-(1-p)=(p+5)-(2p-3) oleBooks	$\checkmark T_2 - T_1 = T_3 - T_2$
	2p - 3 - 1 + p = p + 5 - 2p + 3	✓ $2p-3-1+p=p+5-2p+3$
	3p - 4 = -p + 8	✓ $p=3$
	4p = 12	(3)
	p = 3	
3(b)(1)	$T_1 = 1 - (3) = -2$	✓ answer
		(1)
3(b)(2)	$d = T_2 - T_1 = (2p - 3) - (1 - p)$	$\checkmark (2p-3) - (1-p)$ $\checkmark p = 3$
	$\therefore d = (2(3) - 3) - (1 - 3)$	✓ $p=3$
	$\therefore d = 3 - (-2)$	(2)
	$\therefore d = 5$	
3(c)	The sequence is -2;3;8;13;18;23;28;33;38;	✓ ✓ answer
	After the first term -2 , all the other terms end in either	(2)
	a 3 or an 8.	roı
	Perfect squares never end in a 3 or an 8.	[8]

[8]

MATHEMATICS	GRADE 12	SESSION 2	(TEACHER NOTES)
4 $ar^{5} = \sqrt{3}$ $ar^{7} = \sqrt{27}$ $\therefore \frac{ar^{7}}{ar^{5}} = \frac{\sqrt{27}}{\sqrt{3}}$ $\therefore r^{2} = \sqrt{\frac{27}{3}}$ $\therefore r^{2} = \sqrt{9}$ $\therefore r^{2} = 3$ $\therefore r = \sqrt{3} (te)$ $\therefore a(\sqrt{3})^{5} = \sqrt{3}$ $\therefore a = \frac{\sqrt{3}}{(\sqrt{3})^{5}}$ $\therefore a = \frac{1}{(\sqrt{3})^{4}}$ $\therefore a = \frac{1}{9}$	erms are positive) √3		✓ $ar^5 = \sqrt{3}$ ✓ $ar^7 = \sqrt{27}$ ✓ dividing ✓ $r^2 = 3$ ✓ $r = \sqrt{3}$ ✓ correct working with surds ✓ $a = \frac{1}{9}$
$\ldots u = \frac{1}{9}$	Éc	oleBooks	[7]

SOLUTIONS TO HOMEWORK: SEQUENCES & SERIES (B)

5(a)	$\sum_{n=1}^{n} (6r-1) = [6(1)-1] + [6(2)-1] + [6(3)-1] + \dots + [6(n)-1] = 456$	 ✓ expanding ✓ correct formula 	
	$=5+11+17+\dots+(6n-1)=456$	$\checkmark 456 = \frac{n}{2} \left(2a + (n-1)d \right)$	
	$S_n = \frac{n}{2} \left(2a + (n-1)d \right)$	✓ $0 = 3n^2 + 2n - 456$ ✓ $(3n + 38)(n - 12) = 0$	
	$\therefore 456 = \frac{n}{2} \left(2a + (n-1)d \right)$	✓ $(3n+30)(n-12)=0$ ✓ $n=-\frac{38}{3}$ or $n=12$	
	$\therefore 456 = \frac{n}{2} (2(5) + (n-1)(6))$	$\checkmark :: n = 12$	(7)
	$\therefore 456 = \frac{n}{2}(10+6n-6)$		(7)
	$\therefore 456 = \frac{n}{2} (4+6n)$		
	$\therefore 456 = 2n + 3n^2$		
	$\therefore 0 = 3n^2 + 2n - 456$		

Ι

MATHEMAT	ICS	GRADE 12	SESSION 2	(TEACHER NOTES)
	$\therefore (3n+38)(n-12) =$ $\therefore 3n = -38 \text{ or } n = 12$ $\therefore n = -\frac{38}{3} \text{ or } n =$ $\therefore n = 12$	12		
5(b)	$\sum_{k=3}^{n} [(2k-1)n] = 5n + \frac{1}{2}$ $\therefore a = 5n, d = 2n \text{ and}$ $\therefore S_{n-2} = \frac{n-2}{2} [2a+(n-2)n]$ $\therefore S_{n-2} = \frac{n-2}{2} [2(5n)n]$ $\therefore S_{n-2} = \frac{n-2}{2} [10n + \frac{1}{2}n]$ $\therefore S_{n-2} = \frac{n-2}{2} [2n^2 + \frac{1}{2}n]$	d number of terms n-2-1)d] +(n-3)(2n)] $2n^2-6n$] 4n]		✓ expanding ✓ $a = 5n, d = 2n$ ✓ number of terms = $n - 2$ ✓ correct formula ✓ substitution ✓ answer (6)
	$\therefore S_{n-2} = 2n(n-2) + n$ $\therefore S_{n-2} = 2n^2 - 4n + n$			[13]
6(a)	$\sum_{n=1}^{\infty} 2(\frac{1}{2}x)^n$ = $2(\frac{1}{2}x)^1 + 2(\frac{1}{2}x)^2 + 2$ = $x + \frac{1}{2}x^2 + \frac{1}{4}x^3 + \frac{1}{8}x^3$ The series converges $-1 < \frac{1}{2}x < 1$ $\therefore -2 < x < 2$	$2(\frac{1}{2}x)^3 + 2(\frac{1}{2}x)^4 + .$ ⁴ + for:	oleBooks	$\checkmark r = \frac{1}{2}x$ $\checkmark -1 < \frac{1}{2}x < 1$ $\checkmark -2 < x < 2$ (3)
6(b)	$a = \frac{1}{2} \qquad r = \frac{1}{2} \left(\frac{1}{2}\right) =$ $\therefore S_{\infty} = \frac{\frac{1}{2}}{1 - \frac{1}{4}} = \frac{2}{3}$	$=\frac{1}{4}$		✓ a and r ✓ S_{∞} formula ✓ $\frac{2}{3}$ (3) [6]

NINCE

Downlo GAUTENG	ad more resources	s like this on SENIOR SECOND	ECOLEBOOKS . COM
MATHEMA	TICS GRADE 1	2 SESSION 2	(TEACHER NOTES)
Question 1	7: $1 \qquad \boxed{\frac{1}{2}}$ $\frac{1}{2}$	$ \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} $	
DIAGRA	M 1 DIAGRAM 2	DIAGRAM 3	DIAGRAM 4
7(a)	Area of unshaded square = Area of large square – Area = (1)(1) - $\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)$ = $1 - \frac{1}{16} = \frac{15}{16}$		$\checkmark (1)(1) - \left(\frac{1}{4}\right) \left(\frac{1}{4}\right)$ $\checkmark \frac{15}{16}$ (2)
7(b)	Sum of the unshaded area squares: = $(1-1) + (1-\frac{1}{4}) + (1-\frac{1}{4^2}) + (1-\frac{1}{4^2}) + (1-\frac{1}{4^2}) + (1-\frac{1}{4^2}) + (1-\frac{1}{4}) + (1-\frac{1}{4}) + (1-\frac{1}{4^2}) + (1-\frac{1}{4}) + (1-\frac{1}{4}) + (1-\frac{1}{4^2}) + (1-\frac{1}{4}) + (1-\frac{1}{4^2}) + (1-\frac{1}{4^2}$		 ✓ Getting the pattern for the unshaded areas ✓ correct formula ✓ substitution ✓ answer (5)
8	$\therefore S_{\infty} = \frac{1,5}{1 - \left(\frac{2}{3}\right)}$ $\therefore S_{\infty} = 4,5 \text{ m}$ Thus the greatest height is	- 4,5 m	 ✓ correct formula ✓ substitution ✓ answer [3]

I

Page 25 of 123

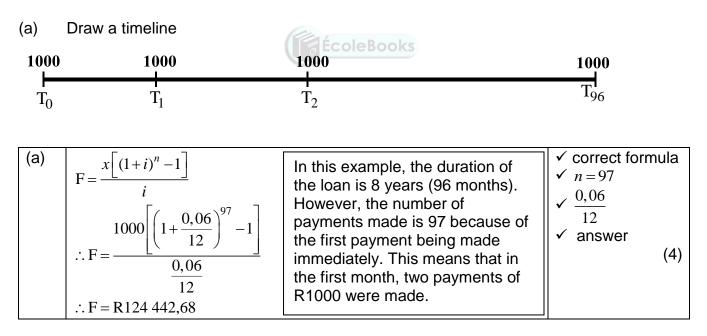
MATH	IEMATICS G	RADE 12	SESSION 3	(TEACHER NOT
FINA	NCIAL MATHEMATICS			
valu valu is or equa	cher Note: This session on the annuities. A future value e annuity is a loan. There a the in which a learner borro al repayments with interest. rge sum of money into the	e annuity is a s re two types of ws money fror The second typ	avings plan for the loans dealt with in a bank and has to be of loan is one in v	future, whereas a pres this session: The first l p pay a certain numbe which the learner depo
inter	SON OVERVIEW			
inter	rest over a given time period	I. ession 2	10 minutes 10 minutes	
inter LES 1. 2.	SON OVERVIEW Review Homework from S	I. ession 2	10 minutes	
inter	SON OVERVIEW Review Homework from S Introduction session: Typical exam questions: Question 1:	ession 2 15 minutes 15 minutes 35 minutes	10 minutes	

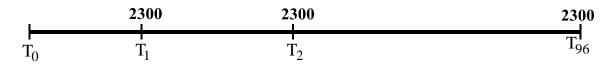
SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1 15 minutes

- (a) Suppose that at the beginning of the month, R1000 is deposited into a bank. At the end of that month, a further R1000 is deposited and a further R1000 at the end of the next month. This continues for eight years. If the interest rate is 6% per annum compounded monthly, how much will have been saved after the eight year period?
- (b) Patrick decided to start saving money for a period of eight years starting on 31 December 2009. At the end of January 2010 (in one month's time), he deposited R2300 into the savings plan. Thereafter, he continued making deposits of R2300 at the end of each month for the planned eight year period. The interest rate remained fixed at 10% per annum compounded monthly. (4)
 - (1) How much will he have saved at the end of his eight year plan which started on the 31 December 2009?
 - (2) If Patrick leaves the accumulated amount in the bank for a further three months, what will the investment then be worth?

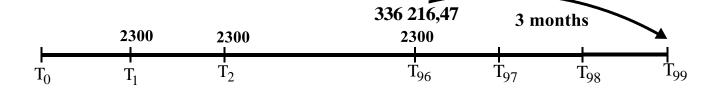
(4) [16]


(4)

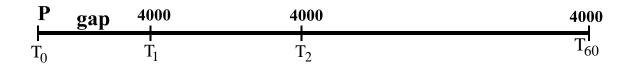

I		nload moi Ing departmi		<mark>DURCES lik</mark>		is on EC			RAMME
	MATHE	EMATICS		GRADE 12		SESSION 3		(TEACHER	NOTES)
	QUES	STION 2	15 minute	es					
	(a)	means of mo month after t	onthly paym he granting	loan to pay for h nents of R4000 t g of the loan. Th Calculate the pu	for a pe ne intere	riod of five ye st rate is 249	ears startir % per annu	ng one	(4)
	(b)) from his father pounded month			•		
		from the inve	estment for	a period of twe	nty year	s starting in	one month	n's time.	
		How much w	rill he recei	ve each month?	?				(4)
									[8]

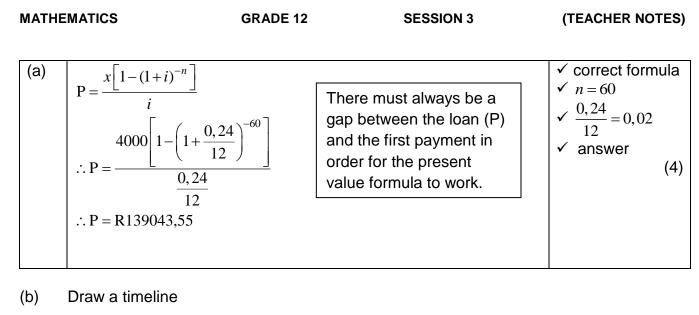
SECTION B: SOLUTIONS AND HINTS TO SECTION A

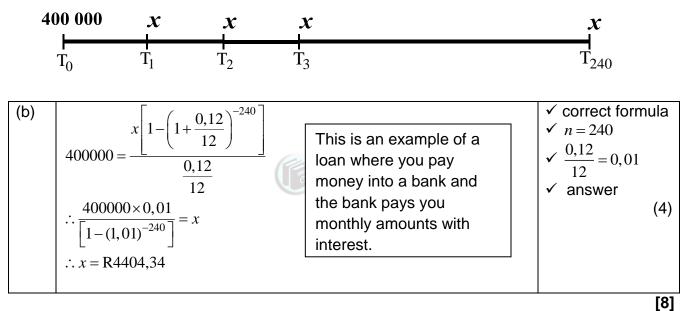
QUESTION 1


(b)(1) Draw a timeline

MATHEN	IATICS	GRADE 12	SESSION 3	(TEACHER NOTES)
(b)(1)	$F = \frac{x \left[(1+i)^n - 1 \right]}{i}$ $\therefore F = \frac{2300 \left[\left(1 + \frac{0,10}{12} \right) \right]}{\frac{0,10}{12}}$ $\therefore F = R336\ 216,47$) ⁹⁶ -1	s example, the duration of an is 8 years (96 months). ever, the number of ents made is 96 because first payment being made nonth after the start of the gs plan.	✓ correct formula ✓ $n = 96$ ✓ $\frac{0,10}{12}$ ✓ answer (4)


(b)(2) Draw a timeline


(b)(2)	A = P(1+ <i>i</i>) ^{<i>n</i>} ∴ A = 336 216,47 $\left(1 + \frac{0,10}{12}\right)^3$ ∴ A = R344 692,12	Since there will no longer be any further payments of R2300 into the annuity, all we now need to do is grow the R336 216,47 for three months using the formula $A = P(1+i)^n$ to calculate the future value of the investment after the further three months.	✓ correct formula ✓ $n = 3$ ✓ $P = 336 216,47$ ✓ answer (4)
			[16]


QUESTION 2

(a) Draw a timeline

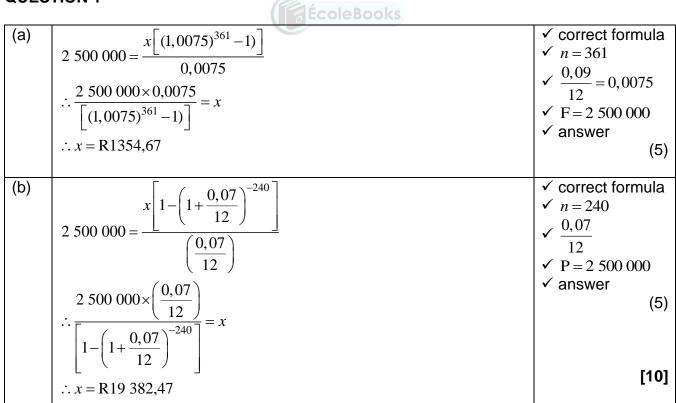
SECTION C: HOMEWORK

QUESTION 1

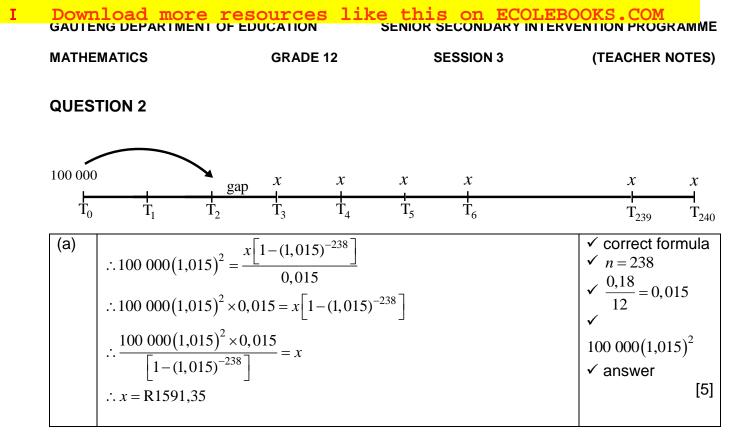
Mpho takes out a retirement annuity that will supplement his pension when he retires in thirty years' time. He estimates that he will need R2 500 000 in this retirement fund at that stage. The interest rate he earns is 9% per annum compounded monthly.

(a) Calculate his monthly payment into this fund if he starts paying immediately and makes his final payment in 30 years' time. (5)

OLEBOOKS . COM Down] SENIOR SECONDARY INTERVENTION PROGRAMME GAUTENG DEPARTMENT OF EDUCATION MATHEMATICS GRADE 12 **SESSION 3** (TEACHER NOTES) (b) The retirement fund does not pay out the R2 500 000 million when Mpho retires. Instead he will be paid monthly amounts, for a period of twenty years, starting one month after his retirement. If the interest that he earns over this period is calculated at 7% per annum compounded monthly, determine the monthly payments he will receive. (5) [10]


QUESTION 2

Simphiwe takes out a twenty year loan of R100 000. She repays the loan by means of equal monthly payments starting **three months** after the granting of the loan. The interest rate is 18% per annum compounded monthly. Calculate the monthly payments.


[5]

SECTION D: SOLUTIONS TO SESSION 3 HOMEWORK: TOPIC 1: FINANCIAL MATHEMATICS A

QUESTION 1

Page 31 of 123

MATHEMATICS

GRADE 12

SESSION 4

(TEACHER NOTES)

(6)

(6) [12]

(3)

FINANCIAL MATHEMATICS

Teacher Note: This session on Financial Mathematics will deal with **future and present value annuities**. A present value annuity is a savings plan for the future, whereas a present value annuity is a loan. There are two types of loans dealt with in this session: The first loan in one in which the learner borrows money from a bank and has to pay a certain number of equal repayments with interest. The second type of loan is one in which the learner deposits a large sum of money into the bank and the bank pays the learner equal amounts with interest over a given time period. In this lesson, learners will be required to work with logs to calculate the value of n. They will also deal with sinking funds.

LESSON OVERVIEW

1.	Introduction session:	5 minutes
2.	Discuss Homework from Session 3	15 minutes
3.	Typical exam questions:	
	Question 1:	15 minutes
	Question 2:	20 minutes
4.	Discussion of solutions:	35 minutes

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1

15 minutes

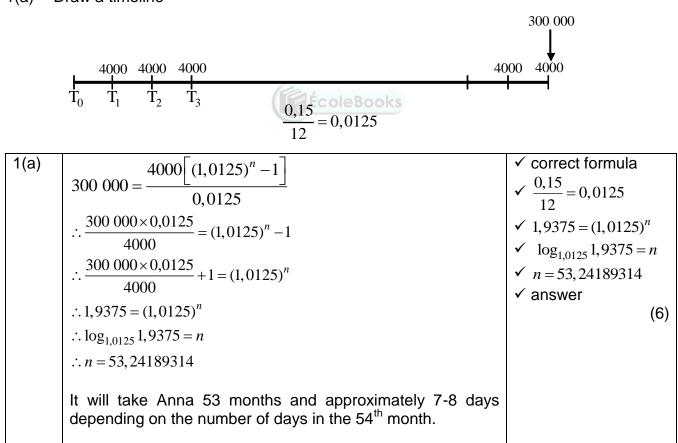
- (a) Anna wants to save R300 000 by paying monthly amounts of R4000, starting in one month's time, into a savings account paying 15% p.a. compounded monthly. How long will it take Anna to accumulate the R300 000?
- (b) Peter borrows R500 000 from a bank and repays the loan by means of monthly payments of R8000, starting one month after the granting of the loan. Interest is fixed at 18% per annum compounded monthly. How many payments of R8000 will be made?

QUESTION 2 (Sinking funds) 20 minutes

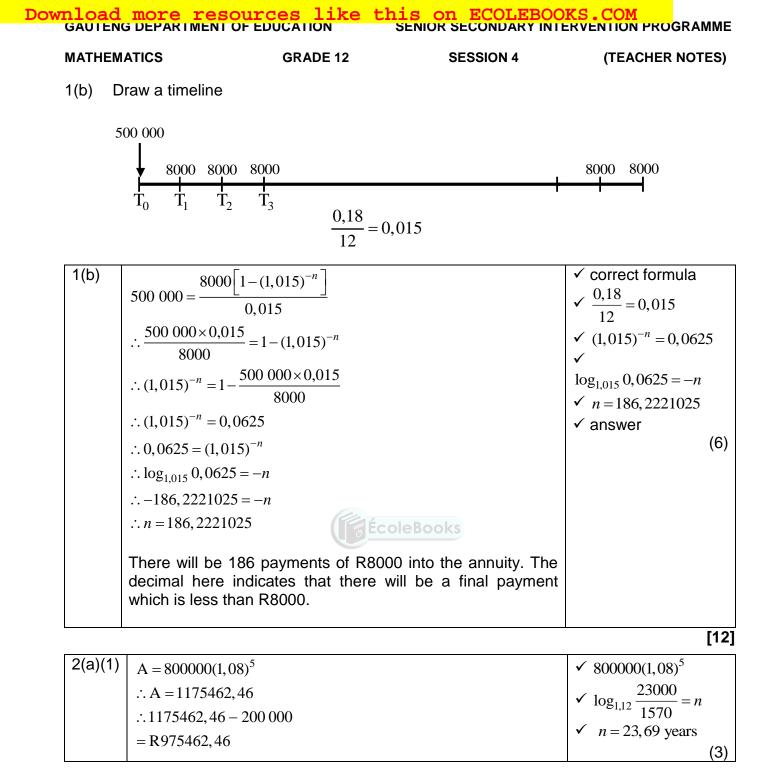
- (a) A farmer has just bought a new tractor for R800 000. He has decided to replace the tractor in 5 years' time, when its trade-in value will be R200 000. The replacement cost of the tractor is expected to increase by 8% per annum.
 - (1) The farmer wants to replace his present tractor with a new one in 5 years' time. The farmer wants to pay cash for the new tractor, after trading in his present tractor for R200 000. How much will he need to pay?

MATHEMATICS	GRADE 12	SESSION 4	(TEACHER NOTES)
-------------	----------	------------------	-----------------

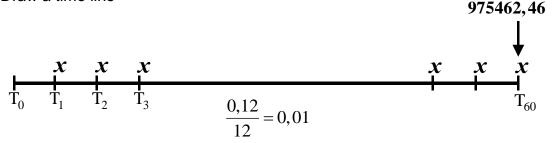
- (2) One month after purchasing his present tractor, the farmer deposited *x* rands into an account that pays interest at a rate of 12% p.a., compounded monthly. He continued to deposit the same amount at the end of each month for a total of 60 months. At the end of sixty months he has exactly the amount that is needed to purchase a new tractor, after he trades in his present tractor. Calculate the value of *x*.
- (b) Suppose that twelve months after the purchase of the present tractor and every twelve months thereafter, he withdraws R5 000 from his account, to pay for maintenance of the tractor. If he makes five such withdrawals, what will the new monthly deposit be?

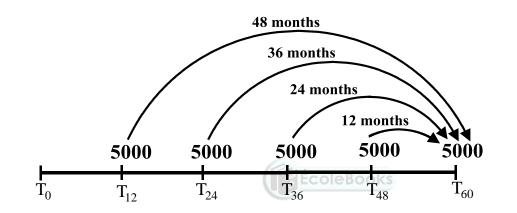

(4) [13]

(6)


SECTION B: SOLUTIONS AND HINTS TO SECTION A

1(a) Draw a timeline


Ι


2(a) (2) Draw a time line

MATHEMATICS **GRADE 12 SESSION 4** (TEACHER NOTES) ✓ correct formula 2(a)(2) $\mathbf{F} = \frac{x[(1+i)^n - 1]}{i}$ \checkmark n = 60✓ $\frac{0,12}{12} = 0,01$ $\therefore 975462, 46 = \frac{x[(1,01)^{60} - 1]}{0,01}$ ✓ F = 975462, 46 $\therefore \frac{975462, 46 \times 0.01}{[1,01]^{60} - 1} = x$ $\checkmark\checkmark$ x = R 11944,00(6) $\therefore x = R 11944,00$

2(b) Draw a time line

2(b)	Services	✓ services
	$= [5000(1,01)^{48} + 5000(1,01)^{36} + 5000(1,01)^{24} + 5000(1,01)^{12} + 5000]$	✓ 975462,46+services
	= 32197,77	$\checkmark \frac{x[1,01]^{60}-1}{2}$
		0,01
	975462, 46 + services = $x \frac{[1,01]^{60} - 1}{2}$	✓ $x = R12338, 24$
	0,01	(4)
	975462, 46 + 32197, 77 = 81, 66966986x	
	x = R12338, 24	
	[13]	

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 4 (TEACHER NOTES)

SECTION C: HOMEWORK

QUESTION 1

Mark's small business, called Postal Emporium, purchases a photocopying machine for R200 000. The photocopy machine depreciates in value at 20% per annum on a reducing balance. Mark's business wants to buy a new machine in five years' time. A new machine will cost much more in the future and its cost will escalate at 16% per annum effective. The old machine will be sold at scrap value after five years. A sinking fund is set up immediately in order to save up for the new machine. The proceeds from the sale of the old machine will be used together with the sinking fund to buy the new machine. The small business will pay equal monthly amounts into the sinking fund, and the interest earned is 18% per annum compounded monthly. The first payment will be made immediately, and the last payment will be made at the end of the five year period.

(a)	Find the scrap value of the old machine.	(2)

- (b) Find the cost of the new machine in five years' time. (2)
- Find the amount required in the sinking fund in five years' time. (C) (1)
- Find the equal monthly payments made into the sinking fund. (4) (d)
- (e) Suppose that the business decides to service the machine at the end of each year for the five year period. R3000 will be withdrawn from the sinking fund at the end of each year starting one year after the original machine was bought.
 - Calculate the reduced value of the sinking fund at the end of the five year (1) period due to these withdrawals. (3)
 - Calculate the increased monthly payment into the sinking fund which (2) will yield the original sinking fund amount as well as allow for withdrawals from the fund for the services. (5)

[17]

QUESTION 2

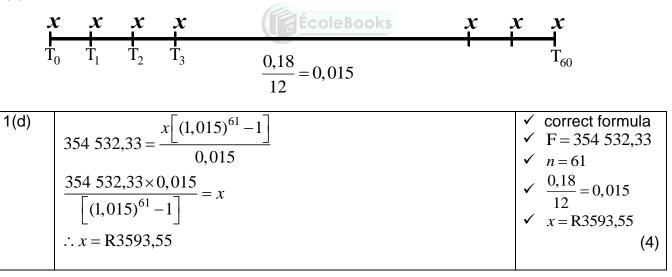
- (a) R2000 is immediately deposited into a savings account. Six months later and every six months thereafter, R2000 is deposited into the account. The interest rate is 16% p.a. compounded half-yearly. How long will it take to accumulate R100 000?
 - (b) How long will it take to repay a loan of R400 000 if the first guarterly payment of

R17000 is made three months after the granting of the loan and the interest rate

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM Page 36 of 123

(7)

GAUTENG DEPARTMENT	OF EDUCATION S		ERVENTION PROGRAMME
MATHEMATICS	GRADE 12	SESSION 4	(TEACHER NOTES)
is 16% per annu	m compounded quarterly	<i>!</i> ?	(6)
			[13]

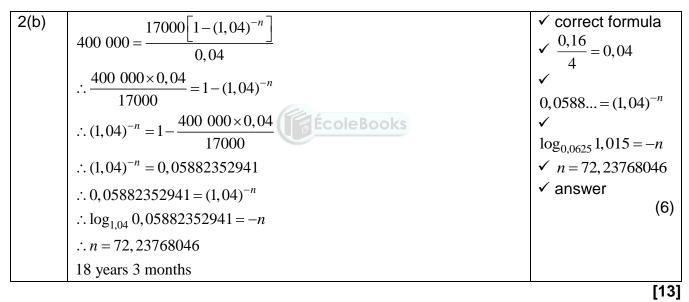

SECTION D: SOLUTIONS TO HOMEWORK: FINANCIAL MATHEMATICS

QUESTION 1

Ι

1(a)	A = 200 000(1−0,2) ⁵ ∴ A = R65 536	 ✓ correct formula ✓ answer (2)
1(b)	A = 200 000(1+0,16) ⁵ \therefore A = R420 068,33	✓ correct formula ✓ answer (2)
1(c)	Sinking fund = 420 068,33 - 65 536 Sinking fund = 354 532,33	✓ answer (1)

1(d) Draw a time line



Download I GAUTENG	MOTE TESOUTCE	<mark>s like</mark>	this or SENIOR	1 ECOLEBO	OOKS	• COM ENTION PROGRAMME
MATHEMAT	rics o	GRADE 12	:	SESSION 4		(TEACHER NOTES)
1(e) (1)	Draw a tim	e line				
			48 months	_		
			36 months			
	/	/ /	24 mor	nths	\mathbf{X}	
				12 months		
	3000	3000	3000	3000	300	0
	$T_0 T_{12}$	T ₂₄	T ₃₆	T ₄₈	T ₆₀	
1(e)(1)	Future value of the $3000\left(1+\frac{0.18}{12}\right)^{48} + 3000\left(1+\frac{0.18}{12}\right)^{24} + R22\ 133,22$ The reduced value R354 532,33-R22 1	$3000 \left(1 + \frac{0.1}{12} + 3000 \left(1 + \frac{0}{12}\right)^{2}\right)$	$\left(\frac{18}{2}\right)^{36}$ $\left(\frac{18}{12}\right)^{12} + 300$ g fund will b	e:		 ✓ services ✓ R22 133,22 ✓ reduced value (3)
1(e)(2)	If we add R22 133, R354 532,33, then sinking fund amoun year period, but withdrawals at the e 354 532,33+22 133, $\therefore 376 665,55 = \frac{x[(1, -1)]}{(1,015)^{61}-1]}$	22 to the or it will be posi- it of R354 5 also be a end of each y $22 = \frac{x [(1,01)]}{0,0}$	iginal sinkin ssible not o 532,33 at th able to may year for the	nly to receive the end of the ake the se	e the five rvice od.	✓ correct formula ✓ F = 376 665,55 ✓ n = 61 ✓ $\frac{0,18}{12} = 0,015$ ✓ x = R3817,90 (5)
	$\therefore x = R3817,90$					[17]

MATHEMAT	GRADE 1	2 SESSION 4	(TEACHER NOTES)
2(a)	$100\ 000 = \frac{2000\left[(1,08)^{n+1}-1\right]}{0,08}$ $\therefore \frac{100\ 000 \times 0,08}{2000} = (1,08)^{n+1}-1$ $\therefore \frac{100\ 000 \times 0,08}{2000} + 1 = (1,08)^{n+1}$ $\therefore 5 = (1,08)^{n+1}$ $\therefore \log_{1,08} 5 = n+1$ $\therefore n = 19,91237188$ $\therefore n \approx 20 \text{ half-years}$ $\therefore n \approx 10 \text{ years}$ (since there are 20 half years in a ten-year period)		✓ correct formula ✓ $\frac{0,16}{2} = 0,08$ ✓ time period = n+1 ✓ $5 = (1,08)^{n+1}$ ✓ $\log_{1,08} 5 = n+1$ ✓ $n = 19,91237188$ ✓ $n \approx 10$ years (7)

Ι

Page 39 of 123

MATHEMATICS GRADE 12 SESSION 5 (TEACHER NOTES)

TRIGONOMETRY (REVISION)

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1

- (a) If $2\tan\theta 3 = 0$, then determine by means of a diagram and without using a calculator, the value of $13\sin^2\theta - \frac{2}{3}\tan\theta$, if it is given that $180^\circ < \theta < 360^\circ$. (6)
- (b) (1) If $\sin 18^\circ = t$, use a diagram to determine the following in terms of *t*:

$$\frac{\cos^2 18^\circ . \tan^2 18^\circ}{\sin 18^\circ} \tag{6}$$

(2) By using identities, verify your answer. (3)

QUESTION 2

Simplify the following without using a calculator:

(a)
$$\sin 150^{\circ} .\cos 240^{\circ} .\tan 315^{\circ}$$

(b) $\frac{\sin(180^{\circ} + \theta)}{\cos 360^{\circ} .\cos(360^{\circ} - \theta)}$
(5)
(4)

(c)
$$\sin^2 130^\circ + \sin^2 320^\circ$$
 (4)

QUESTION 3

- (a) If $\tan A = p$, p > 0 and $A \in [0^{\circ}; 90^{\circ}]$ determine with the aid of a diagram the value of the following in terms of *p*.
 - $(1) \quad \sin A \tag{3}$
 - (2) $\cos A$ (1)
- (b) Simplify the following without using a calculator:

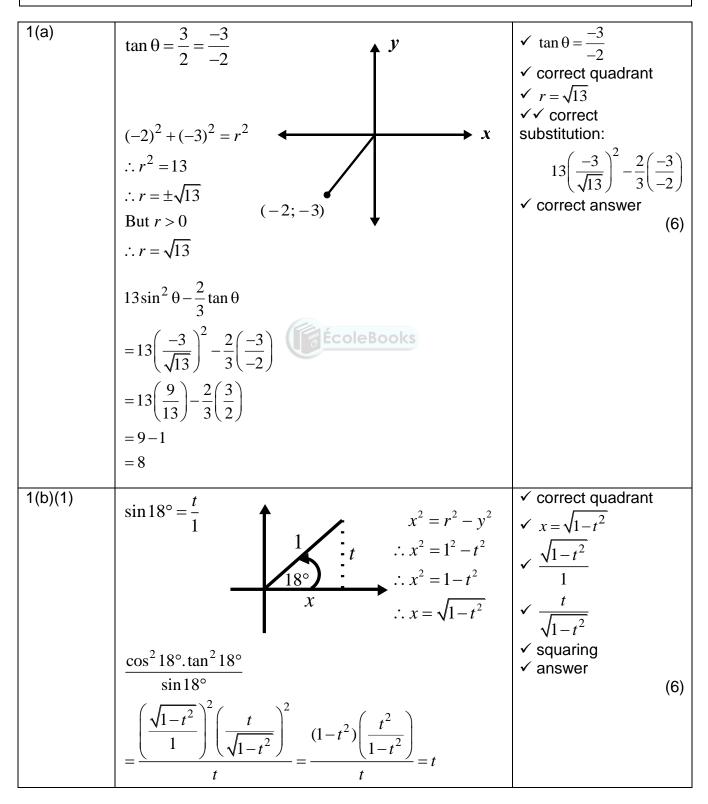
(1)
$$\frac{\tan(-480^\circ).\sin 300^\circ.\cos 14^\circ.\sin(-135^\circ)}{1040^\circ.\cos 14^\circ.\sin(-135^\circ)}$$
 (7)

$$\frac{1}{\sin 104^\circ .\cos 225^\circ}$$

(2)
$$\tan(90^\circ + x).\sin(-x - 180^\circ)$$
 (6)

 MATHEMATICS
 GRADE 12
 SESSION 5
 (TEACHER NOTES)

 QUESTION 4


Prove the following by using identities:

Ι

$$\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} = \frac{2}{\cos\theta}$$

(5)

SECTION B: SOLUTIONS AND HINTS

MATHEMATICS	GRADE 12 SESSION 5	TEACHER NOTES)
1(b)(2)	$\frac{\cos^2 18^\circ \cdot \tan^2 18^\circ}{\sin 18^\circ}$ $= \frac{\cos^2 18^\circ \cdot \frac{\sin^2 18^\circ}{\cos^2 18^\circ}}{\sin 18^\circ}$ $= \frac{\sin^2 18^\circ}{\sin 18^\circ}$ $= \sin 18^\circ$ $= t$	✓ $\frac{\sin^2 18^\circ}{\cos^2 18^\circ}$ ✓ $\sin 18^\circ$ ✓ answer (3)
2(a)	$\frac{-i}{\sin 150^\circ \cdot \cos 240^\circ \cdot \tan 315^\circ}$ $= (\sin 30^\circ)(-\cos 60^\circ)(-\tan 45^\circ)$ $= \left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)(-1)$ $= \frac{1}{4}$	✓ $\sin 30^{\circ}$ ✓ $\cos 360^{\circ} = 1$ ✓ $-\tan 45^{\circ}$ ✓ evaluating special angles ✓ answer (5)
2(b)	$\frac{\sin(180^\circ + \theta)}{\cos 360^\circ .\cos(360^\circ - \theta)}$ $= \frac{-\sin \theta}{(1)(\cos \theta)}$ $= -\tan \theta$	$ \begin{array}{l} \checkmark -\sin\theta \\ \checkmark -\cos60^{\circ} \\ \checkmark \cos\theta \\ \checkmark -\tan\theta \\ \end{array} $ (4)
2(c)	$sin^{2} 130^{\circ} + sin^{2} 320^{\circ}$ = sin^{2} 50^{\circ} + sin^{2} 40^{\circ} = sin^{2} 50^{\circ} + cos^{2} 50^{\circ} = 1	$\checkmark \sin^2 50^\circ$ $\checkmark \sin^2 40^\circ$ $\checkmark \cos^2 50^\circ$ $\checkmark 1$ (4)

MATHEMATICS GRADE 12 SESSION 5

Ι

(TEACHER NOTES)

3(a)(1)		✓ correct quadrant
	$\tan A = \frac{p}{1} \tag{1: } n$	$\checkmark r = \sqrt{1+p^2}$
	$\begin{vmatrix} 1 \\ r^2 = x^2 + y^2 \\ r \end{pmatrix} (1; p)$	$\checkmark r = \sqrt{1 + p^2}$ $\checkmark \sin A = \frac{p}{\sqrt{p^2 + 1}}$
	$r^2 = 1^2 + p^2$	$\checkmark \sin A = \frac{P}{\sqrt{p^2 + 1}}$
	$r^2 = p^2 + 1$	$\sqrt{p^{p+1}}$ (3)
	$r = \sqrt{p^2 + 1}$	(3)
	$\sin A = \frac{p}{\sqrt{p^2 + 1}}$ $\cos A = \frac{1}{\sqrt{p^2 + 1}}$	
3(a)(2)	$\cos A = \frac{1}{2}$	$\checkmark \cos A = \frac{1}{1}$
	$\sqrt{p^2+1}$	$\checkmark \cos A = \frac{1}{\sqrt{p^2 + 1}}$
		(1)
3(b)(1)	$tan(-480^{\circ}).sin 300^{\circ}.cos 14^{\circ}.sin(-135^{\circ})$	$\checkmark \tan 60^\circ$
	sin104°.cos225°	$\checkmark -\sin 60^{\circ}$ $\checkmark -\sin 45^{\circ}$
	$\frac{(-\tan 480^{\circ})(-\sin 60^{\circ})(\cos 14^{\circ})(-\sin 135^{\circ})}{(-\sin 135^{\circ})}$	$\checkmark \sin(90^\circ - 14^\circ) = \cos 14^\circ$
	$(\sin 76^{\circ})(-\cos 45^{\circ})$	$\checkmark -\cos 45^{\circ}$
	$=\frac{(-\tan 120^{\circ})(-\sin 60^{\circ})(\cos 14^{\circ})(-\sin 45^{\circ})}{(-\sin 45^{\circ})(-\sin 45^{\circ})}$	✓ evaluating special
	$(\sin 76^\circ)(-\cos 45^\circ)$	angles
	$= \frac{(-(-\tan 60^\circ))(-\sin 60^\circ)(\cos 14^\circ)(-\sin 45^\circ)}{(-\sin 45^\circ)(-\sin 45^\circ)}$	√answer
	$= \frac{(\sin(90^\circ - 14^\circ))(-\cos 45^\circ)}{(\sin(90^\circ - 14^\circ))(-\cos 45^\circ)}$	(7)
	$=\frac{(\tan 60^{\circ})(-\sin 60^{\circ})(\cos 14^{\circ})(-\sin 45^{\circ})}{(-\sin 45^{\circ})(-\sin 45^{\circ})}$	
	$(\cos 14^\circ)(-\cos 45^\circ)$	
	$=\frac{\left(\sqrt{3}\right)\cdot\left(-\frac{\sqrt{3}}{2}\right)\cdot\left(-\frac{\sqrt{2}}{2}\right)}{\left(-\frac{\sqrt{2}}{2}\right)}=-\frac{3}{2}$	
3(b)(2)	$\tan(90^\circ + x).\sin(-x - 180^\circ)$	$\checkmark \frac{\sin(90^\circ + x)}{\sin(90^\circ + x)}$
	$=\frac{\sin(90^{\circ}+x)}{\cos(90^{\circ}+x)}\sin[-(x+180^{\circ})]$	$\cos(90^\circ + x)$
	$\cos(90^\circ + x)$	$\checkmark -\sin(180^\circ + x)$
	$=\frac{\cos x}{-\sin x}\times-\sin(180^\circ+x)$	$\checkmark \checkmark \frac{\cos x}{-\sin x}$
	$=\frac{\cos x}{-\sin x}\times -(-\sin x)$	$ \begin{array}{l} \checkmark \sin x \\ \checkmark -\cos x \end{array} $
		(6)
	$=\frac{\cos x}{-\sin x} \times \sin x$	
	$=-\cos x$	

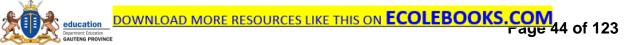
D GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS	GRADE 12	SESSION 5	(TEACHER NOTES)
4	$LHS = \frac{1 + \sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta}$ $= \frac{(1 + \sin \theta)^2 + \cos^2 \theta}{\cos \theta (1 + \sin \theta)}$ $= \frac{1 + 2\sin \theta + \sin^2 \theta + \cos^2 \theta}{\cos \theta (1 + \sin \theta)}$ $= \frac{1 + 2\sin \theta + 1}{\cos \theta (1 + \sin \theta)}$ $= \frac{2 + 2\sin \theta}{\cos \theta (1 + \sin \theta)} = \frac{2(1 + \sin \theta)}{\cos \theta (1 + \sin \theta)}$	= = K113	$\checkmark \cos \theta (1 + \sin \theta)$ \checkmark $1 + 2 \sin \theta + \sin^2 \theta + \cos^2 \theta$ $\checkmark \sin^2 \theta + \cos^2 \theta = 1$ $\checkmark 2(1 + \sin \theta)$ $\checkmark \frac{2}{\cos \theta}$ (5)

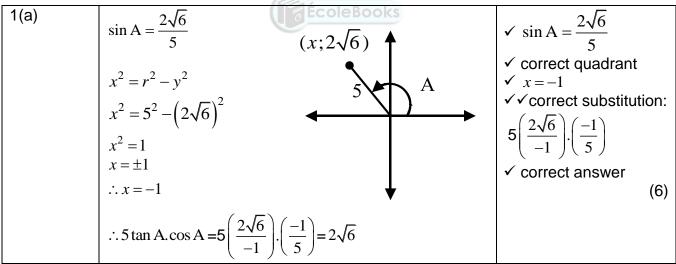
SECTION C: HOMEWORK

QUESTION 1

- If $\frac{5\sin A}{2} = \sqrt{6}$ and $A \in [90^\circ; 360^\circ]$ calculate without the use of a calculator and with (a) the aid of a diagram the value of $5 \tan A \cdot \cos A$.
- If $\sin 32^\circ = m$, use a diagram to express the following in terms of m: (b)


(1)	sin 328°	(4)
(2)	cos 58°	(2)
(3)	tan 212°	(2)

Simplify the following without using a calculator:


(a)
$$\frac{\cos 210^\circ. \tan^2 315^\circ}{\sin 300^\circ. \cos 120^\circ}$$
 (5)

(b)
$$\frac{\sin^2(180^\circ + \theta).\sin(360^\circ - \theta)}{\cos^2(90^\circ - \theta).\cos(90^\circ + \theta)}$$
 (5)

(c)
$$\cos^2(360^\circ - x) - \sin(180^\circ - x)\cos(90^\circ + x) - \cos^2(180 + x)$$
 (5)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS **GRADE 12 SESSION 5** (TEACHER NOTES) **QUESTION 3** (a) Simplify: $\tan(180^{\circ} + x)\cos(360^{\circ} - x)$ (9) $\sin(180^\circ - x)\cos(90^\circ + x) + \cos(540^\circ + x)\cos(-x)$ If $\cos 26^\circ = p$, express the following in terms of *p*: (b) $\cos(-64^\circ)\tan(-244^\circ)\sin^2 334^\circ$ (8) cos 566° **QUESTION 4** Prove that: $\cos^2 x \left[\frac{1}{\sin x - 1} + \frac{1}{\sin x + 1} \right] = 2$ (5) SECTION D: SOLUTIONS TO HOMEWORK

Ι

MATHEMATICS GRADE 12 SESSION 5 (TEACHER NOTES)

1(b)(1)	$\sin 32^\circ = \frac{m}{1}$ $x^2 + m^2 = 1$ $\therefore x = \sqrt{1 - m^2}$ $\sin 328^\circ = \sin 32^\circ = m$ x	✓ correct quadrant ✓ $x = \sqrt{1 - m^2}$ ✓ $\sin 328^\circ = \sin 32^\circ$ ✓ answer (4)
1(b)(2)		✓ sin 32° ✓ answer (2)
1(b)(3)	$\tan 212^{\circ}$ $= \tan 32^{\circ}$ $= \frac{m}{\sqrt{1 - m^2}}$	$\checkmark \tan 32^{\circ}$ $\checkmark \frac{m}{\sqrt{1-m^2}}$ (2)
2(a)	$\frac{\frac{\cos 210^{\circ} \cdot \tan^{2} 315^{\circ}}{\sin 300^{\circ} \cdot \cos 120^{\circ}}}{=\frac{(-\cos 30^{\circ})(-\tan 45^{\circ})^{2}}{(-\sin 60^{\circ})(-\cos 60^{\circ})}}$ $=\frac{\left(-\frac{\sqrt{3}}{2}\right)(-1)^{2}}{\left(-\frac{\sqrt{3}}{2}\right)\left(-\frac{1}{2}\right)}$ $=-2$	 ✓ -cos 30° ✓ (-tan 45°)² ✓ -sin 60° ✓ -cos 60° ✓ evaluating special angles ✓ answer
2(b)	$\frac{\sin^{2}(180^{\circ} + \theta).\sin(360^{\circ} - \theta)}{\cos^{2}(90^{\circ} - \theta).\cos(90^{\circ} + \theta)}$ $= \frac{(\sin^{2}\theta)(-\sin\theta)}{(\sin^{2}\theta)(-\sin\theta)}$ $= 1$	Numerator: $\checkmark \sin^2 \theta$ $\checkmark -\sin \theta$ Denominator: $\checkmark \sin^2 \theta$ $\checkmark -\sin \theta$ $\checkmark 1$ (5)
2(c)	$\cos^{2}(360^{\circ} - x) - \sin(180^{\circ} - x)\cos(90^{\circ} + x) - \cos^{2}(180 + x)$ $= \cos^{2} x - (\sin x)(-\sin x) - \cos^{2} x$ $= \sin^{2} x$	$\checkmark \checkmark \checkmark \checkmark \text{reductions}$ $\checkmark \sin^2 x \tag{5}$

MATHEMATICS GRADE 12

SESSION 5

(TEACHER NOTES)

3(a)	$\frac{\tan(180^\circ + x)\cos(360^\circ - x)}{\sin(180^\circ - x)\cos(90^\circ + x) + \cos(540^\circ + x)\cos(-x)}$ $= \frac{(\tan x)(\cos x)}{(\sin x)(-\sin x) - (\cos x)(\cos x)}$ $= \frac{\frac{\sin x}{\cos x}}{-\sin^2 x - \cos^2 x}$ $= \frac{\sin x}{-(\sin^2 x + \cos^2 x)}$ $= -\sin x$	Numerator: $\checkmark \checkmark (\tan x)(\cos x)$ $\checkmark \frac{\sin x}{\cos x}$ Denominator: $\checkmark \checkmark \checkmark \checkmark$ $(\sin x)(-\sin x) - (\cos x)(\cos x)$ $\checkmark -(\sin^2 x + \cos^2 x)$ $\checkmark -\sin x$ (9)
3(b)	$\frac{\frac{\cos(-64^{\circ})\tan(-244^{\circ})\sin^{2} 334^{\circ}}{\cos 566^{\circ}}}{=\frac{(\cos 64^{\circ})(-\tan 244^{\circ})(-\sin 26^{\circ})^{2}}{\cos 206^{\circ}}}$ $=\frac{(\cos 64^{\circ})(-\tan 64^{\circ})\sin^{2} 26^{\circ}}{-\cos 26^{\circ}}$ $=\frac{(\cos 64^{\circ})\left(\frac{-\sin 64^{\circ}}{\cos 64^{\circ}}\right)\sin^{2} 26^{\circ}}{-\sin 64^{\circ}}$ EcoleBooks $=\sin^{2} 26^{\circ}$	$\checkmark \cos 64^{\circ}$ $\checkmark -\tan 64^{\circ}$ $\checkmark \sin^{2} 26^{\circ}$ $\checkmark -\cos 26^{\circ}$ $\checkmark \frac{-\sin 64^{\circ}}{\cos 64^{\circ}}$ $\checkmark -\sin 64^{\circ}$ $\checkmark 1 - \cos^{2} 26^{\circ}$ $\checkmark 1 - p^{2}$
	$=1-\cos^2 26^\circ$ $=1-p^2$	(8)
4	$\cos^2 x \left[\frac{1}{\sin x - 1} + \frac{1}{\sin x + 1} \right]$ $= \cos^2 x \left[\frac{(1 + \sin x) + (1 - \sin x)}{(1 + \sin x)(1 - \sin x)} \right]$ $= \cos^2 x \left[\frac{2}{1 - \sin^2 x} \right]$	$\checkmark (1+\sin x) + (1-\sin x)$ $\checkmark (1+\sin x)(1-\sin x)$ $\checkmark \frac{2}{1-\sin^2 x}$ $\checkmark \frac{2}{\cos^2 x}$ $\checkmark 2$ (7)
	$= \cos^2 x \left[\frac{2}{\cos^2 x} \right]$ $= 2$	(5)

Download more reso GAUTENG DEPARTMENT	Durces like t	his on ECOLEB	OOKS . COM NTERVENTION PROGRAMME
MATHEMATICS	GRADE 12	SESSION 6	(TEACHER NOTES)
TRIGONOMETRY			
 that learners master a many different types of Trigonometry which invibe integrated with the 	Il the basic rules and of questions. In this volves compound an trigonometry studied	d definitions and be ab session learners will d double angles. Thes in Grade 11. Before at	e part of Paper 2. Ensure ole to apply these rules in concentrate on Grade 12 se Grade 12 concepts will tempting the typical exam on Section B of the learner
LESSON OVERVIEW			

1.	Introduction session: Discuss Homework from Session 5	10 minutes 10 minutes
2.	Typical exam questions:	
	Question 1	15 minutes
	Question 2:	10 minutes
	Question 3:	5 minutes
3.	Discussion of solutions:	35 minutes
4	Discuss Homework for this session	5 minutes

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1

Simplify the following without using a calculator:

(a)
$$\frac{\tan(-60^{\circ})\cos(-156^{\circ})\cos 294^{\circ}}{\sin 492^{\circ}}$$
 (7)

(b)
$$\frac{\cos^2 375^\circ - \cos^2 (-75^\circ)}{\sin(-50^\circ)\sin 230^\circ - \sin 40^\circ \cos 310^\circ}$$
(7)

[14]

QUESTION 2

- (a) Show that $\cos(60^\circ + \theta) \cos(60^\circ \theta) = -\sqrt{3}\sin\theta$ (5)
- (b) Hence, evaluate $\cos 105^\circ + \cos 15^\circ$ without using a calculator. (5)

[10]

I							ECOLEBOOKS.COM	
	GAUTENG DEPAR	IMENI	OF EDUCATION	SE	NIOR SE	COND	DARY INTERVENTION PROGRAMME	

MATHEMATICS	GRADE 12	SESSION 6	(TEACHER NOTES)

QUESTION 3

Rewrite $\cos 3\theta$ in terms of $\cos \theta$.

[6]

SECTION B: SOLUTIONS AND HINTS

1(a)	$\tan(-60^{\circ})\cos(-156^{\circ})\cos 294^{\circ}$	$\checkmark (-\tan 60^\circ)(\cos 156^\circ)$
	sin 492°	$\checkmark -\cos 66^{\circ}$
	$=\frac{(-\tan 60^{\circ})(\cos 156^{\circ})(-\cos 66^{\circ})}{(-\cos 66^{\circ})}$	$\checkmark \sin 48^{\circ}$
	(sin132°)	$\checkmark -\sqrt{3}$
	$(-\sqrt{3})(-\cos 24^{\circ})(-\sin 24^{\circ})$	$\checkmark -\sin 24^\circ$
	$=\frac{(-\sqrt{3})(-\cos 24^{\circ})(-\sin 24^{\circ})}{(\sin 48^{\circ})}$	$\checkmark 2\sin 24^\circ \cos 24^\circ$
		$\checkmark \frac{\sqrt{3}}{2}$
	$=\frac{(-\sqrt{3})(-\cos 24^{\circ})(-\sin 24^{\circ})}{2\sin 24^{\circ}\cos 24^{\circ}}$	2
		(7)
	$=-\frac{\sqrt{3}}{2}$	
	2	
1(b)	$\cos^2 375^\circ - \cos^2(-75^\circ)$	$\checkmark \cos^2 15^\circ$
	$\overline{\sin(-50^\circ)\sin 230^\circ + \sin 40^\circ \cos 310^\circ}$	$\checkmark \cos^2 75^\circ$
	$\cos^2 15^\circ - \cos^2 75^\circ$ ÉcoleBooks	$\checkmark \sin^2 50^\circ$
	$=\frac{1}{(-\sin 50^\circ)(-\sin 50^\circ) + (\sin 40^\circ)(\cos 50^\circ)}$	$\checkmark \cos^2 50^\circ$
		$\checkmark \cos 30^{\circ}$
	$=\frac{\cos^2 15^\circ - \sin^2 15^\circ}{2}$	✓ 1
	$=\frac{1}{\sin^2 50^\circ + (\cos 50^\circ)(\cos 50^\circ)}$	$\checkmark \frac{\sqrt{3}}{2}$
	$\cos^2 15^\circ - \sin^2 15^\circ$	-
	$=\frac{\cos^2 15^\circ - \sin^2 15^\circ}{\sin^2 50^\circ + \cos^2 50^\circ}$	(7)
	$=\frac{\cos 2(15^{\circ})}{1}$	
	$=\cos 30^{\circ}$	
	$=\frac{\sqrt{3}}{2}$	[4.4]
2(a)		[14] ✓
2(a)	$\cos(60^\circ + \theta) - \cos(60^\circ - \theta)$	$\cos 60^\circ . \cos \theta - \sin 60^\circ . \sin \theta \checkmark$
	$= \cos 60^{\circ} \cdot \cos \theta - \sin 60^{\circ} \cdot \sin \theta - (\cos 60^{\circ} \cdot \cos \theta + \sin 60^{\circ} \cdot \sin \theta)$	$\cos 60^\circ . \cos \theta + \sin 60^\circ . \sin \theta \checkmark$
		$\sqrt{3}$
	$= \left(\frac{1}{2}\right) \cdot \cos \theta - \left(\frac{\sqrt{3}}{2}\right) \cdot \sin \theta - \left(\frac{1}{2}\right) \cdot \cos \theta - \left(\frac{\sqrt{3}}{2}\right) \cdot \sin \theta$	$\frac{\sqrt{3}}{2}$
	$(2)^{1.000}$ $(2)^{1.000}$ $(2)^{1.000}$ $(2)^{1.000}$	<u>ک</u>
	$=-\sqrt{3}\sin\theta$	$\checkmark \frac{1}{2}$
		$\checkmark -\sqrt{3}\sin\theta$
		(5)
		(8)

MATHEMATICS		GRADE 12	SESSION 6	(TEACHER NOTES)
2(b)	$\cos 105^\circ + \cos 15^\circ$ $= \cos (60^\circ + 45^\circ)$ $= -\sqrt{3} \sin 45^\circ$ $= -\sqrt{3} \left(\frac{\sqrt{2}}{2}\right)$ $= \frac{-\sqrt{6}}{2}$	$-\cos(60^\circ - 45^\circ)$		$\checkmark \cos(60^\circ + 45^\circ)$ $\checkmark \cos(60^\circ - 45^\circ)$ $\checkmark -\sqrt{3}\sin 45^\circ$ $\checkmark \frac{\sqrt{2}}{2}$ $\checkmark \frac{-\sqrt{6}}{2}$ (5) [10]
3	$= 2\cos^{3}\theta - \cos\theta$ $= 2\cos^{3}\theta - \cos\theta$ $= 2\cos^{3}\theta - \cos\theta$	$\cos \theta - (2\sin \theta \cos \theta) \cdot \sin \theta$ $-2\sin^2 \theta \cdot \cos \theta$ $-2(1 - \cos^2 \theta) \cos \theta$ $-2(\cos \theta - \cos^3 \theta)$ $-2\cos \theta + 2\cos^3 \theta$)	$\begin{array}{c} \checkmark \cos(2\theta + \theta) \\ \checkmark \cos 2\theta \cdot \cos \theta - \sin 2\theta \cdot \sin \theta \\ \checkmark 2\cos^2 \theta - 1 \\ \checkmark 2\sin \theta \cos \theta \\ \checkmark 1 - \cos^2 \theta \\ \checkmark 4\cos^3 \theta - 3\cos \theta \end{array} $ [6]

SECTION C: HOMEWORK

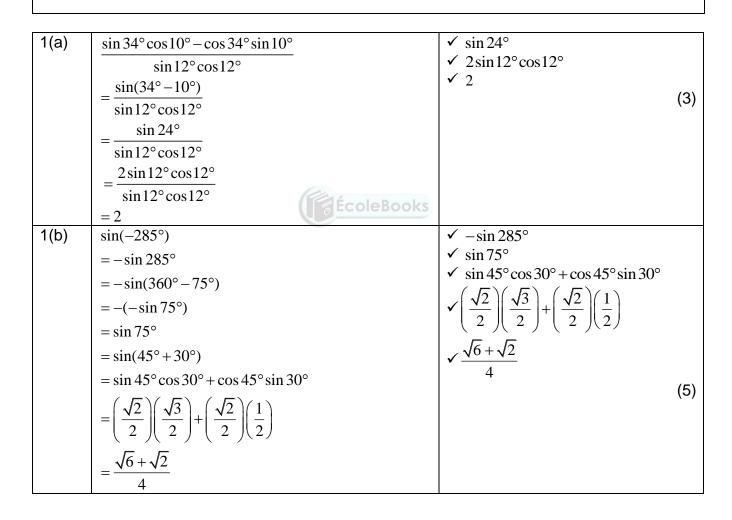
ÉcoleBooks

QUESTION 1

Determine the value of the following without using a calculator.

(a)
$$\frac{\sin 34^{\circ} \cos 10^{\circ} - \cos 34^{\circ} \sin 10^{\circ}}{\sin 12^{\circ} \cos 12^{\circ}}$$
 (3)

(b)
$$\sin(-285^{\circ})$$
 (5)


(c)
$$\frac{\cos^2 15^\circ - \sin 15^\circ \cos 75^\circ}{\cos^2 15^\circ + \sin 15^\circ \cos 15^\circ \tan 15^\circ}$$
 (6)
[14]

I			THE RESOURCES 1	ke this on SENIOR SECOND	ECOLEBOOKS . COM	ИE
	MATH	IEMATICS	GRADE 12	SESSION 6	(TEACHER NOTE	S)
	QUE	STION 2				
	(a)	Prove that	$\sin(45^\circ + \theta) \cdot \sin(45^\circ - \theta) =$	$=\frac{1}{2}\cos 2\theta$		(5)
	(b)	Hence deter	rmine the value of sin 75°	°.sin15°		(3) [8]
	QUE	STION 3				

Prove that: $\sin 4\theta = 4\sin \theta . \cos \theta - 8\sin^3 \theta . \cos \theta$

SOLUTIONS TO HOMEWORK: TRIGONOMETRY (A)

[4]

MATHEM	ATICS	GRADE 12	SESSION 6	(TEACHER N	NOTES)
1(c)	$\cos^2 15^\circ - \sin 15^\circ$	cos 75°	✓ cos	$^{2}15^{\circ}-\sin 15^{\circ}.\sin 15^{\circ}$	
	$\overline{\cos^2 15^\circ + \sin 15^\circ \cos}$	15° tan 15°	$\checkmark \frac{\sin}{2}$	<u>15°</u>	
	$-\frac{\cos^2 15^\circ - \sin 15^\circ}{\sin 15^\circ}$	$\cos(90^\circ - 15^\circ)$		215°	
	$-\cos^2 15^\circ + \sin 15^\circ c$		$\checkmark \cos 1 \\ \checkmark \cos 3 \\ \checkmark 1$	$^{2}15^{\circ} + \sin^{2}15^{\circ}$ 30°	
	$=\frac{\cos^2 15^\circ - \sin 15^\circ \cdot s}{\sin 15^\circ \cdot s}$	in15°	$\sqrt{\sqrt{3}}$		
	$= \frac{1}{\cos^2 15^\circ + \sin^2 1}$.5°	v <u>2</u>		
	$=\frac{\cos^2 15^\circ - \sin^2 15^\circ}{1}$				(6)
	1				
	$=\cos^2 15^\circ - \sin^2 15^\circ$				
	$=\cos 2(15^\circ)=\cos 30$	2			[14]
2(a)	$\sin(45^\circ + \theta) \cdot \sin(45^\circ - \theta)$			pansion of $sin(45^\circ + \theta)$	
	$= [\sin 45^{\circ} \cos \theta + \cos 45]$		-	bansion of $\sin(45^\circ - \theta)$	
	$=\left[\frac{\sqrt{2}}{2}\cos\theta + \frac{\sqrt{2}}{2}\sin\theta\right]$	$\left\ \frac{\sqrt{2}}{2}\cos\theta - \frac{\sqrt{2}}{2}\sin\theta\right\ $		$45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}$	
	$=\left[\frac{\sqrt{2}}{2}(\cos\theta+\sin\theta)\right]$	$\frac{\sqrt{2}}{2}(\cos\theta - \sin\theta)$	✓ (cos	$s^2 \theta - \sin^2 \theta$) os 2 θ	
	$=\frac{2}{4}(\cos\theta + \sin\theta)(\cos\theta)$	feer -	leBooks $\checkmark \frac{-c}{2}$	os 20	
	$=\frac{1}{2}(\cos^2\theta - \sin^2\theta) = \frac{1}{2}(\cos^2\theta - \sin^2\theta$				(5)
2(b)	$\frac{2}{\sin 75^\circ}$. $\sin 15^\circ$	2	✓ 45°	°+30°; 45°-30°	
_()	$= \sin(45^\circ + 30^\circ) \cdot \sin(45^\circ)$	45-30°)	$\checkmark \frac{1}{2}$ co		
			2	0300	
	$=\frac{1}{2}\cos 2(30^\circ) = \frac{1}{2}\cos 2(30^\circ)$	$\cos 60^\circ = \frac{-}{2} \left(\frac{-}{2}\right) = \frac{-}{4}$	$\checkmark \frac{1}{4}$		
			4		(3)
					[8]
3	sin 40			n 2θ.cos 2θ n θ.cos θ	
	$=\sin 2(2\theta)$		$\checkmark 2 \sin 1 - 2$		
	$=2\sin 2\theta.\cos 2\theta$			$n\theta \cdot \cos\theta - 8\sin^3\theta \cdot \cos\theta$	
	$= 2(2\sin\theta.\cos\theta)(1-$	$-2\sin^2\theta$)			[4]
	$=4\sin\theta.\cos\theta-8\sin^2\theta$	$^{3}\theta.\cos\theta$			

SCI-BONO mindset The SSIP is supported by DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM Page 52 of 123

TRIGONOMETRY Teacher Note: Trigonometry is an extremely important and large part of Paper 2. Ensurant to the learners master all the basic rules and definitions and be able to apply these rules are will concentrate on Grade Trigonometry which involves compound and double angles. These Grade 12 concepts be integrated with the trigonometry studied in Grade 11. Before attempting the typical exact questions, learners must familiarise themselves with the basics in Section B of the learnotes. LESSON OVERVIEW 1. Introduction session: 5 minutes Homework Discussion 10 minutes 2. Typical exam questions: Question 1: 15 minutes Question 3: 10 minutes 3. Discussion of solutions: 35 minutes 4. Discussion of solutions: 35 minutes 5. Discussion of solutions: 35 minutes 6. Discussion of solutions: 35 minutes	Download more resord GAUTENG DEPARTMENT OF EDUC	CATION S	ENIOR SECONDARY IN I	ERVENTION PROGRAMME			
Teacher Note: Trigonometry is an extremely important and large part of Paper 2. Ensithat learners master all the basic rules and definitions and be able to apply these rules many different types of questions. In this session learners will concentrate on Grade Trigonometry which involves compound and double angles. These Grade 12 concepts be integrated with the trigonometry studied in Grade 11. Before attempting the typical exact questions, learners must familiarise themselves with the basics in Section B of the lear notes. LESSON OVERVIEW 1. Introduction session: 5 minutes Homework Discussion 10 minutes 2. Typical exam questions: Question 1: 15 minutes Question 2: 10 minutes 3. Discussion of solutions: 35 minutes 4. Discussion of solutions: 35 minutes 4. Discuss Homework 5 minutes 5. Discussion of solutions: 35 minutes 6. Discuss Homework 5 minutes	MATHEMATICS	GRADE 12	SESSION 7	(TEACHER NOTES)			
that learners master all the basic rules and definitions and be able to apply these rules many different types of questions. In this session learners will concentrate on Grade Trigonometry which involves compound and double angles. These Grade 12 concepts be integrated with the trigonometry studied in Grade 11. Before attempting the typical exquestions, learners must familiarise themselves with the basics in Section B of the lear notes. LESSON OVERVIEW 1. Introduction session: 5 minutes Homework Discussion 10 minutes 2. Typical exam questions: Question 1: 15 minutes Question 2: 10 minutes Question 3: 10 minutes 3. Discussion of solutions: 35 minutes 4. 4. Discussion of solutions: 35 minutes 5.	TRIGONOMETRY						
1. Introduction session: 5 minutes Homework Discussion 10 minutes 2. Typical exam questions: Question 1: 15 minutes Question 2: 10 minutes Question 3: 10 minutes 3. Discussion of solutions: 35 minutes 4. Discuss Homework 5 minutes	Teacher Note: Trigonometry is an extremely important and large part of Paper 2. Ensure that learners master all the basic rules and definitions and be able to apply these rules in many different types of questions. In this session learners will concentrate on Grade 12 Trigonometry which involves compound and double angles. These Grade 12 concepts will be integrated with the trigonometry studied in Grade 11. Before attempting the typical exam questions, learners must familiarise themselves with the basics in Section B of the learner notes.						
Homework Discussion 10 minutes 2. Typical exam questions: Question 1: 15 minutes Question 2: 10 minutes Question 3: 10 minutes 3. Discussion of solutions: 35 minutes 4. Discuss Homework 5 minutes	LESSON OVERVIEW						
Question 1: 15 minutes Question 2: 10 minutes Question 3: 10 minutes 3. Discussion of solutions: 35 minutes 4. Discuss Homework 5 minutes		• • • • • • • •					
Question 2: 10 minutes Question 3: 10 minutes 3. Discussion of solutions: 35 minutes 4. Discuss Homework 5 minutes	2. Typical exam questions:						
Question 3: 10 minutes 3. Discussion of solutions: 35 minutes 4. Discuss Homework 5 minutes	Question 1:	15 minutes					
 3. Discussion of solutions: 35 minutes 4. Discuss Homework 5 minutes 	Question 2:	10 minutes					
4. Discuss Homework 5 minutes	Question 3:	10 minutes					
Greateroux		5 minutes					
		Ecol	Books				
JECTION A. ITFICAL EXAMIQUESTIONS	SECTION A: TYPICAL EXA	M QUESTIONS					

QUESTION 1

Prove that:

I

(a)	$\frac{1 - \cos 2x - \sin x}{\sin 2x - \cos x} = \tan x$	(6)
-----	--	-----

(b)
$$\frac{\sin\theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta} = \tan \theta$$
 (6)

(c)
$$\frac{\cos 2A}{1+\sin 2A} = \frac{\cos A - \sin A}{\cos A + \sin A}$$
 (5)
[17]

QUESTION 2

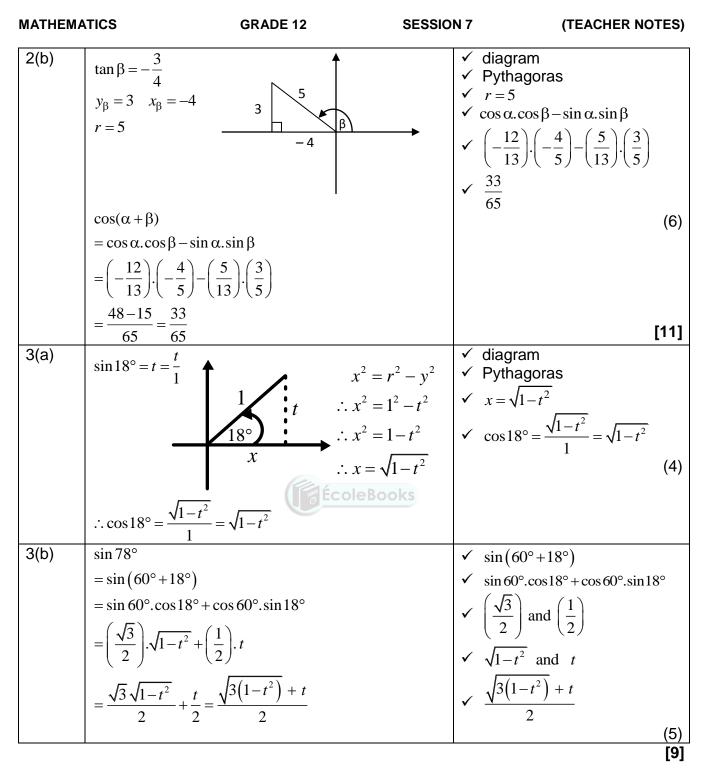
It is known that $13\sin\alpha - 5 = 0$ and $\tan\beta = -\frac{3}{4}$ where $\alpha \in [90^\circ; 270^\circ]$ and $\beta \in [90^\circ; 270^\circ]$. Determine, without using a calculator, the values of the following:

(a)	$\cos \alpha$	(5)
(b)	$\cos(\alpha + \beta)$	(6)
1		[11]

	resources like	this on ECOLE SENIOR SECONDAR	BOOKS . COM
MATHEMATICS	GRADE 12	SESSION 7	(TEACHER NOTES)
QUESTION 3			
If $\sin 18^\circ = t$ dete	rmine the following in tern	ns of <i>t</i> .	
(a) cos18°			(4)

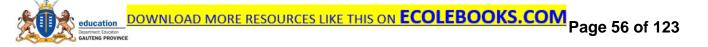
(5)

(b) sin 78°


SECTION B: SOLUTIONS AND HINTS

	1		-	
1(a)	$\frac{1-\cos 2x-\sin x}{\sin x}$		$\checkmark 1 - 2\sin^2 x$	
	$\sin 2x - \cos x$		$\checkmark 2\sin x \cos x$	
	$1 - (1 - 2\sin^2 x) - \sin x$		$\checkmark \sin x(2\sin x-1)$	
	$= \frac{1}{2\sin x \cos x - \cos x}$		$\checkmark \cos x(2\sin x - 1)$	
	$1 - 1 + 2\sin^2 x - \sin x$		$\checkmark \frac{\sin x}{2}$	
	$=\frac{1}{2\sin x\cos x - \cos x}$		$\begin{array}{c} \cos x \\ \checkmark \ \tan x \end{array}$	
	$2\sin^2 x - \sin x$			(6)
	$-\frac{1}{2\sin x\cos x - \cos x}$			
	$-\frac{\sin x(2\sin x-1)}{2}$			
	$-\frac{1}{\cos x(2\sin x-1)}$	ÉcoleBooks		
	$=\frac{\sin x}{\cos x}=\tan x$			
	$-\cos x$			
1(b)	$\sin\theta + \sin 2\theta$		$\checkmark 2\sin\theta\cos\theta$	
	$1 + \cos \theta + \cos 2\theta$		$\checkmark 2\cos^2\theta - 1$	
	$-\frac{\sin\theta+2\sin\theta.\cos\theta}{2}$		$\checkmark \sin\theta(1+2\cos\theta)$	
	$\frac{1}{1+\cos\theta+\left(2\cos^2\theta-1\right)}$		$\checkmark \cos\theta(1+2\cos\theta)$	
	$\sin\theta(1+2\cos\theta)$		$\checkmark \frac{\sin\theta}{}$	
	$= \frac{1}{\cos \theta + 2\cos^2 \theta}$		$\frac{1}{\cos\theta}$	
	$\sin\theta(1+2\cos\theta)$		$\checkmark \tan \theta$	
	$=\frac{\sin\theta(1+2\cos\theta)}{\cos\theta(1+2\cos\theta)}$			(6)
	× ,			
	$=\frac{\sin\theta}{\cos\theta}$			
	$\cos\theta$			
	$= \tan \theta$			
L				

MATHEMA	ATICS	GRADE 12	SESSION 7	(TEACHER NOTES)
1(c)	$\frac{\cos 2A}{1+\sin 2A}$ $=\frac{\cos^2 A - \sin^2 A}{1+2\sin A \cos A}$ $=\frac{(\cos A + \sin A)(1+2)}{\sin^2 A + \cos^2 A}$ $=\frac{(\cos A + \sin A)(1+2)}{\sin^2 A + 2\sin A}$ $=\frac{(\cos A + \sin A)(1+2)}{(\sin A + \cos A)(1+2)}$	$+ 2 \sin A \cos A$ $\cos A - \sin A)$ $\cos A + \cos^{2} A$ $\cos A - \sin A)$	\checkmark	$ \frac{\cos^{2} A - \sin^{2} A}{2 \sin A \cos A} \\ (\cos A + \sin A)(\cos A - \sin A) \\ (\sin A + \cos A)(\sin A + \cos A) \\ \frac{\cos A - \sin A}{\cos A + \sin A} $ (5)
	$=\frac{\cos A - \sin A}{\cos A + \sin A}$			[17]
2(a)	$\sin \alpha = \frac{5}{13}$ $y_{\alpha} = 5 r_{\alpha} = 13$ $x^{2} + (5)^{2} = (13)^{2}$ $\therefore x^{2} = 144$ $\therefore x_{\alpha} = -12$ $\therefore \cos \alpha = -\frac{12}{13}$		✓ ✓ ✓	$\sin \alpha = \frac{5}{13}$ diagram Pythagoras $x_{\alpha} = -12$ $\cos \alpha = -\frac{12}{13}$ (5)


SECTION C: HOMEWORK

QUESTION 1

Prove that:

(a)
$$(\tan x - 1)(\sin 2x - 2\cos^2 x) = 2(1 - 2\sin x \cos x)$$

(6)

MATHEMATICSGRADE 12SESSION 7(TEACHER NOTES)(b)
$$\frac{\cos 2x}{\cos x - \sin x} = \cos x + \sin x$$
(3)

(a) Show that
$$\sin(45^\circ - \alpha) = \frac{\sqrt{2}(\cos\alpha - \sin\alpha)}{2}$$
 (3)

(b) Hence prove that
$$\sin 2\alpha + 2\sin^2(45^\circ - \alpha) = 1$$
 (6)

QUESTION 3

If $\cos\beta = \frac{p}{\sqrt{5}}$ where p < 0 and $\beta \in [180^\circ; 360^\circ]$, determine, using a diagram, an expression in terms of p for:

(a) $\tan\beta$ (4)

(b) $\cos 2\beta$ (3) [7]

QUESTION 4

If $\sin 61^\circ = \sqrt{a}$, determine the value of the following in terms of *a*:

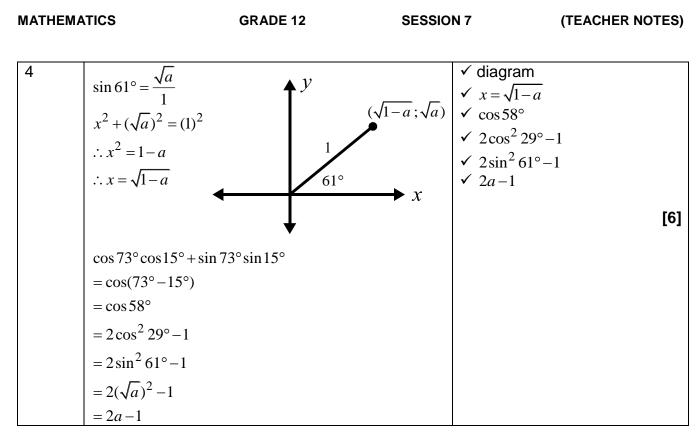
 $\cos 73^{\circ}\cos 15^{\circ}+\sin 73^{\circ}\sin 15^{\circ}$

SECTION D: SOLUTIONS TO HOMEWORK: TOPIC 2: TRIGONOMETRY (2)

· · ·		
1(a)	$(\tan x - 1)(\sin 2x - 2\cos^2 x)$	$\checkmark \frac{\sin x}{\cos x}$
	$(\sin x)$	$\cos x$
	$= \left(\frac{\sin x}{\cos x} - 1\right) \left(2\sin x \cdot \cos x - 2\cos^2 x\right)$	$\checkmark 2\sin x \cos x$
		$\checkmark \frac{\sin x - \cos x}{\cos x}$
	$= \left(\frac{\sin x - \cos x}{\cos x}\right) 2\cos x (\sin x - \cos x)$	$\cos x$
		$\checkmark 2\cos x(\sin x - \cos x)$
	$=2(\sin x - \cos x)^2$	$\checkmark 2(\sin^2 x - 2\sin x \cdot \cos x + \cos^2 x)$
	$=2(\sin^2 x - 2\sin x \cdot \cos x + \cos^2 x)$	$\checkmark 2(1-2\sin x.\cos x)$
	$=2(1-2\sin x.\cos x)$	(6)
1(b)	$\cos 2x$	$\checkmark \cos^2 x - \sin^2 x$
	$\cos x - \sin x$	$\checkmark (\cos x - \sin x)(\cos x + \sin x)$
	$=\frac{\cos^2 x - \sin^2 x}{\sin^2 x}$	$\checkmark \cos x + \sin x$
	$\cos x - \sin x$	(3)
	$=\frac{(\cos x - \sin x)(\cos x + \sin x)}{(\cos x + \sin x)}$	
	$-\cos x - \sin x$	IOI
	$=\cos x + \sin x$	[9]

[6]

[9]


[9]

Ι

MATHEN	IATICS	GRADE 12	SESSION 7	(TEACHER NOTES
2(a)	$\sin(45^\circ - \alpha)$ $= \sin 45^\circ \cdot \cos \alpha - \frac{\sqrt{2}}{2} \cdot \cos \alpha - \frac{\sqrt{2}}{2}$ $= \frac{\sqrt{2}}{2} (\cos \alpha - s)$ $= \frac{\sqrt{2}(\cos \alpha - s)}{2}$	$\frac{\sqrt{2}}{2}$.sin α in α)	\checkmark	$\int \frac{\sin 45^{\circ} \cdot \cos \alpha - \cos 45^{\circ} \cdot \sin \alpha}{\sqrt{2}} \frac{\sqrt{2}}{2} \cdot \cos \alpha - \frac{\sqrt{2}}{2} \cdot \sin \alpha}{\sqrt{2}} \frac{\sqrt{2}}{2} (\cos \alpha - \sin \alpha) $ (3)
2(b)	$= 2\sin\alpha.\cos\alpha +$ $= 2\sin\alpha.\cos\alpha +$ $= 2\sin\alpha.\cos\alpha +$	$2\left[\sin\left(45^\circ - \alpha\right)\right]^2$ $2\left[\frac{\sqrt{2}\left(\cos\alpha - \sin\alpha\right)}{2}\right]^2$ $2\left(\frac{2\left(\cos\alpha - \sin\alpha\right)^2}{4}\right)$ $\left(\cos\alpha - \sin\alpha\right)^2$	2 ~ ~ ~ ~	$\int 2\sin\alpha \cdot \cos\alpha$ $= 2\left[\frac{\sqrt{2}(\cos\alpha - \sin\alpha)}{2}\right]^{2}$ $= (\cos\alpha - \sin\alpha)^{2}$ $= \cos^{2}\alpha - 2\sin\alpha \cos\alpha + \sin^{2}\alpha$ $= \cos^{2}\alpha + \sin^{2}\alpha$ $= 1$ (6)
	$= 2\sin\alpha . \cos\alpha +$ $= \cos^2\alpha + \sin^2\alpha$	$\cos^2 \alpha - 2\sin \alpha \cos \alpha + \sin \alpha = 1$		[9
3(a) 3(b)	$\cos \beta = \frac{p}{\sqrt{5}}$ $x = p$ $r = \sqrt{5}$ $p^{2} + y^{2} = (\sqrt{5})^{2}$ $\therefore y^{2} = 5 - p^{2}$ $\therefore y = -\sqrt{5 - p^{2}}$ $\therefore \tan \beta = \frac{-\sqrt{5 - p^{2}}}{p}$ $\cos 2\beta = 2\cos^{2} \beta$	$-\sqrt{5-p^2}$		diagram Pythagoras $y = -\sqrt{5 - p^2}$ $\tan \beta = \frac{-\sqrt{5 - p^2}}{p}$ (4)
3(b)	$\cos 2\beta = 2\cos^2 \beta$ $= 2\left(\frac{p}{\sqrt{5}}\right)^2 - 1$ $= \frac{2p^2}{5} - 1$	-1		$\cos 2\beta = 2\cos^2 \beta - 1$ $2\left(\frac{p}{\sqrt{5}}\right)^2 - 1$ $\frac{2p^2}{5} - 1$ (3)

education Department: Education GAUTENG PROVINCE

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM Page 58 of 123

ÉcoleBooks

Page 59 of 123

MATH	HEMATIC	s c	GRADE 12	SESSION 8	(TEACHER NOT
CON	ISOLID	ATION			
Leari comp topic	olete ea . Learne	ould attempt the quich section in time s	set and then to utions with Le	o discuss the soluti arner Homework S	It is suggested that learners ons before doing the second olutions. Encourage learner
TOP	IC 1:	NUMBER PATTE	ERNS, SEQUI	ENCES AND SERI	ES
SEC		A: TYPICAL EXAN	I QUESTION		
QUE	STION	1	(Do	E Nov 2008)	Time: 25 minutes
			•	,	
1.1	Consi	der the sequence:	$\frac{1}{2};4;\frac{1}{4};7;$,	
1.1			2 1	$\frac{1}{8}$; 10;	wn the next TWO terms (1)
1.1	1.1.1	If the pattern cont in the sequence.	tinues in the s	$\frac{1}{8}$; 10;	wn the next TWO terms (1)
1.1	1.1.1 1.1.2	If the pattern cont in the sequence.	tinues in the s	$\frac{1}{8}$; 10; ame way, write down	wn the next TWO terms (1)
	1.1.1 1.1.2 Consi	If the pattern cont in the sequence. Calculate the sum der the sequence:	tinues in the s n of the first 5 8 ; 18 ; 30	$\frac{1}{8}$; 10; ame way, write dow 0 terms of the seque ; 44 ;	wn the next TWO terms (1)
	1.1.1 1.1.2 Consi 1.2.1	If the pattern cont in the sequence. Calculate the sum der the sequence: Write down the ne	tinues in the s n of the first 5 8 ; 18 ; 30 ext TWO term	$\frac{1}{8}$; 10; ame way, write dow 0 terms of the sequ ; 44 ; 5 s of the sequence,	wn the next TWO terms (1) ence. (7) if the pattern continues
	1.1.1 1.1.2 Consi 1.2.1 1.2.2	If the pattern cont in the sequence. Calculate the sum der the sequence: Write down the ne in the same way.	tinues in the s n of the first 50 8 ; 18 ; 30 ext TWO term term of the s	$\frac{1}{8}$; 10; ame way, write dow 0 terms of the sequ ; 44; 5 as of the sequence, equence.	wn the next TWO terms (1) ence. (7) if the pattern continues (2)

SECTION B: SOLUTIONS TO SECTION A: TOPIC 1

QUESTION 1

Time for discussion of solution: 15 minutes

1.1.1	1/16 ; 13	✓ answers(1)

GAUTENG	DEPARTMENT OF E	DUCATION	SENIOR SECONDART INTE	RVENTION PROGRAMME
MATHEMA	TICS	GRADE 12	SESSION 8	(TEACHER NOTES)
1.1.2		$\frac{1}{2} + \frac{25}{2} [2(4) + 24(3)]$	5 terms of 2 nd sequence +7+10+13+ to 25 terms)	 ✓ separating the sequences ✓ ✓ sum of geometric series ✓ ✓ sum of arithmetic series ✓ ✓ final answer (7)
1.2.1	60 ; 78			√√ answers (2)
1.2.2	$\therefore 2a = 2$	10 12 14 2 2 $3a+b=10$ $\therefore 3(1)+b=10$ $\therefore b=7$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	✓ first difference row ✓ second difference ✓ $a=1$ ✓ $b=7$ ✓ $c=0$ ✓ $T_n = n^2 + 7n$ (6)
1.2.3	$330 = n^{2} + 7n$ $\therefore -n^{2} - 7n + 330 = 0$ $\therefore n^{2} + 7n - 330 = 0$ $\therefore n = \frac{-7 \pm \sqrt{(7)^{2} - 2}}{2}$ $\therefore n = \frac{-7 \pm 37}{2}$ $\therefore n = 15 \text{ or } n = -7 \text{ (not)}$	4(1)(-330)		✓ $330 = n^2 + 7n$ ✓ $n^2 + 7n - 330 = 0$ ✓ ✓ Substitution into formula or factorising ✓ $n = 15$ or $n = -22$ ✓ $n \neq -22$ (6)
	Alternatively, factor (n-15)(n+22) = 0			[22]

MATHEMATICS GRADE 12 SESSION 8 (TEACHER NOTES)

CONSOLIDATION: TOPIC 2: FINANCIAL MATHS AND TRIGONOMETRY

Time: 25 minutes

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1

- 1.1 Nicholas decides to invest money into the share market in order to save up R800 000 in ten years time. He believes that he can average a return of 18% per annum compounded monthly. Starting immediately, he starts making monthly payments into a share market account.
 - 1.1.1 How much must Nicholas invest per month in order to obtain his R800 000? (5)
 - 1.1.2 At the end of the ten-year period, Nicholas decides not to spend the R800 000 but to rather invest it at an interest rate of 18% per annum compounded half-yearly. How much money will he have then saved four years later?

(4)

1.2 Bonolo borrows money from the bank in order to finance a new home. She takes out a twenty year loan and begins to make monthly payments of R6000 per month starting in one month's time. The current interest rate is 15% per annum compounded monthly. Calculate how much the new home originally cost.

(4) [9]

QUESTION 2

2.1 If $13\sin\theta - 5 = 0$ where $\theta \in [90^\circ; 360^\circ]$ and $5\cos\beta + 4 = 0$ where $\tan\beta > 0$, calculate without the use of a calculator and with the aid of diagrams the value of the following:

$\sin(\theta - \beta)$	(9)
	$\sin(\theta - \beta)$

- 2.1.2 $\tan(90^\circ + \theta)$ (5)
- 2.2 Simplify without using a calculator:

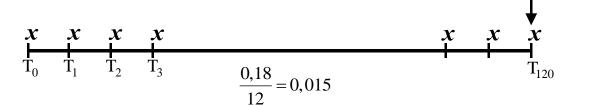
2.2.1
$$\cos(50^\circ + x)\cos(20^\circ + x) + \sin(50^\circ + x)\sin(20^\circ + x)$$
 (3)

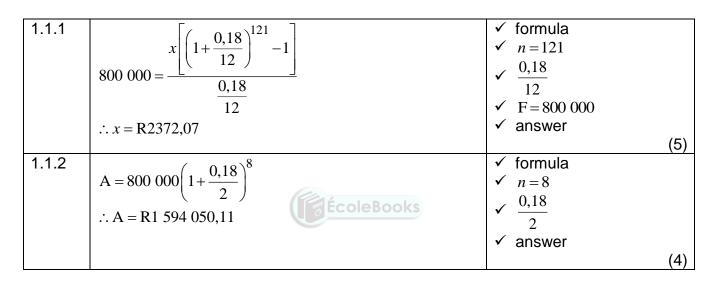
 $2.2.2 \quad \cos(-140^\circ)\cos 740^\circ - \sin 140^\circ \sin(-20^\circ) \tag{6}$

[23]

MATHEMATICS	

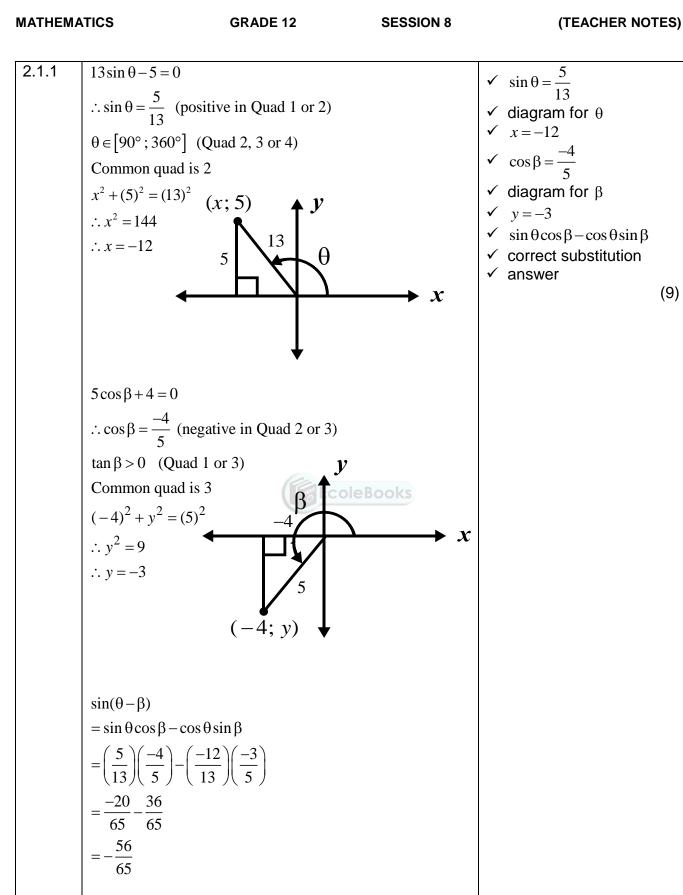
Ι


SESSION 8


(TEACHER NOTES)

800 000

SECTION B: SOLUTIONS TO SECTION A: TOPIC 2


Time for discussion of solution: 20 minutes

	P 6000 6000 6000	6000 6000
,	$T_0 = T_1 = T_2 = T_3 = \frac{0.15}{12} = 0.0125$	T ₂₄₀
1.2	P = $\frac{6000 \left[1 - \left(1 + \frac{0.15}{12} \right)^{-240} \right]}{\frac{0.15}{12}}$ ∴ x = R455 653,67	✓ formula ✓ $n = 240$ ✓ $\frac{0.15}{12}$ ✓ answer (4)

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM Page 64 of 123

MATHEMATICS	GRADE 12	SESSION 8	(TEACHER NOTES)

2.1.2	$\tan(90^\circ + \theta)$ $= \frac{\sin(90^\circ + \theta)}{\cos(90^\circ + \theta)}$	$\checkmark \frac{\sin(90^\circ + \theta)}{\cos(90^\circ + \theta)}$ $\checkmark \cos \theta$
	$= \frac{\cos \theta}{-\sin \theta}$ $= \frac{\frac{-12}{13}}{-\frac{5}{13}}$	 ✓ -sin θ ✓ correct substitution ✓ answer (5)
2.2.1	$=\frac{13}{5}$ $=\frac{12}{5}$ $\cos(50^\circ + x)\cos(20^\circ + x) + \sin(50^\circ + x)\sin(20^\circ + x)$	✓ $\cos[(50^\circ + x) - (20^\circ + x)]$
	$= \cos\left[(50^\circ + x) - (20^\circ + x)\right]$ $= \cos 30^\circ$ $= \frac{\sqrt{3}}{2}$	$\checkmark \cos 30^{\circ}$ $\checkmark \frac{\sqrt{3}}{2}$ (3)
2.2.2	$\frac{2}{\cos(-140^{\circ})\cos 740^{\circ} - \sin 140^{\circ}\sin(-20^{\circ})}$ = $\cos 140^{\circ}\cos 20^{\circ} - (\sin 40^{\circ})(-\sin 20^{\circ})$ = $(-\cos 40^{\circ})(\cos 20^{\circ}) + \sin 40^{\circ}\sin 20^{\circ}$ = $-\cos 40^{\circ}\cos 20^{\circ} + \sin 40^{\circ}\sin 20^{\circ}$ = $-(\cos 40^{\circ}\cos 20^{\circ} - \sin 40^{\circ}\sin 20^{\circ})$	$ \begin{array}{cccc} \checkmark & -\cos 40^{\circ} \\ \checkmark & \cos 20^{\circ} \\ \checkmark & \sin 40^{\circ} \\ \checkmark & -\sin 20^{\circ} \\ \checkmark & -\cos 60^{\circ} \\ \checkmark & -\frac{1}{2} \end{array} $
	$=-\cos 60^{\circ}$	(6)
	$=-\frac{1}{2}$	[23]

Ι

Page 65 of 123

OLEBOOKS Down GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS GRADE 12 **SESSION 9** (TEACHER NOTES)

CONSOLIDATION

Note to Teachers: Encourage learners to complete each section in the time allocated. 80 minutes is allocated to doing questions. Learners need to check solutions on their own.

TOPIC 1: NUMBER PATTERNS, SEQUENCES AND SERIES

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1: 25 minutes

- Consider the following sequence: $\frac{3}{2}$; $\frac{5}{4}$; $\frac{7}{8}$; $\frac{9}{16}$; 1.1
 - Write down the next two terms of the sequence. 1.1.1
 - (2) 1.1.2 Determine the *n*th term of the sequence in simplified form. (5)
- 1.2 By using appropriate formulae and without using a calculator, calculate the value of the following:

1.2.1
$$\sum_{k=2}^{8} \left(\frac{1}{2}\right)^{k-1}$$
 (4)
1.2.2 $\sum_{k=2}^{\infty} \left(\frac{1}{2}\right)^{k-1}$ (2)

1.3 In the figure below, a stack of cans is shown. There are 30 cans in the first layer, 29 cans in the second layer (lying on top of the first layer), 28 cans in the third layer. This pattern of stacking continues.

Determine the maximum number of cans that can be stacked in this way.

(4) [17]

QUESTION 2: 15 minutes

Consider the sequence: 3; *a*; 10; *b*; 21;

The sequence has a constant second difference of 1.

- Determine the value of *a* and *b*. 2.1
- Determine the *n*th term of the sequence. 2.2
- Hence, prove that the sum of any two consecutive numbers in 2.3 the sequence equals a square number. (4)
 - [13]

(4)

(5)

MATHEMATICS GRADE 12

SESSION 9

(TEACHER NOTES)

TOPIC 2: FINANCIAL MATHEMATICS

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1: 40 minutes

1.1 1.2	A motor car costing R200 000 depreciated at a rate of 8% per annum on the reducing balance method. Calculate how long it took for the car to depreciate to f R90 000 under these conditions. Mpho starts a five year savings plan. At the beginning of the month he deposits R2000 into the account and makes a further deposit of R2000 at the end of that month. He then continues to make month end payments of R2000 into the	(4)
	account for the five year period (starting from his first deposit). The interest rate is 6% per annum compounded monthly.	
	1.2.1 Calculate the future value of his investment at the end of the five year	
	period.	(4)
	1.2.2 Due to financial difficulty, Mpho misses the last two payments of R2000. What will the value of his investment now be at the end of the five year	
	period?	(4)
1.3	Lucy takes out a twenty year loan of R400 000. She repays the loan by means of equal monthly payments starting one month after the granting of the loan. The interest rate is 18% per annum compounded monthly.	
	1.3.1 Calculate the monthly repayments.	(3)
	1.3.2 Calculate the amount owed after the 3 rd payment was made.	(2)
	1.3.3 Due to financial difficulty, Brenda misses the 4 th , 5 th and 6 th payments. Calculate her increased monthly payment which comes	
	into effect from the 7^{th} payment onwards.	(4)
		[21]

SECTION B: SOLUTIONS AND HINTS TO SECTION A

1. TOPIC 1: NUMBER PATTERNS, SEQUENCES AND SERIES

QUESTION 1

1.1.1	11 13	✓ ✓ answers
	$\overline{32}$; $\overline{64}$	(2)

MATHEMATIC	S GRADE 12 SESSION 9	(TEACHER NOTES)
1.1.2	The numerators represent an arithmetic sequence: $T_n = 3 + (n-1)(2)$ $\therefore T_n = 3 + 2n - 2$ $\therefore T_n = 2n + 1$ The denominators represent a geometric sequence: $T_n = (2)(2)^{n-1}$ $\therefore T_n = 2^n$ The general term for the given sequence is: $T_n = \frac{2n+1}{2^n}$	✓ $a=3$ and $d=2$ ✓ $T_n = 2n+1$ ✓ $a=2$ and $r=2$ ✓ $T_n = 2^n$ ✓ $T_n = \frac{2n+1}{2^n}$ (5)
1.2.1	$\sum_{k=2}^{8} \left(\frac{1}{2}\right)^{k-1} = \left(\frac{1}{2}\right)^{1} + \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{3} + \dots + \left(\frac{1}{2}\right)^{7}$ $\therefore \mathbf{S}_{7} = \frac{\left(\frac{1}{2}\right) \left(1 - \left(\frac{1}{2}\right)^{7}\right)}{1 - \frac{1}{2}} = 1 - \left(\frac{1}{2}\right)^{7} = 1 - \frac{1}{128} = \frac{127}{128}$	✓ expansion ✓ correct formula ✓ correct substitution ✓ $\frac{127}{128}$ (4)
1.2.2	$\sum_{k=2}^{\infty} \left(\frac{1}{2}\right)^{k-1} = \left(\frac{1}{2}\right)^1 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots$ $\therefore S_{\infty} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$	 ✓ correct formula ✓ answer (2)
1.3	The layers are stacked as follows: $30; 29; 28; 27; \dots, 1$ This forms an arithmetic sequence. $\therefore S_{30} = \frac{30}{2} [2(30) + (30-1)(-1)]$ $\therefore S_{30} = 465$ There are a maximum of 465 gaps that say ha	 ✓ 30; 29; 28; 27;;1 ✓ correct formula ✓ correct substitution ✓ 465 cans (4)
	There are a maximum of 465 cans that can be stacked in this way.	[17]

Download more		like this on	ECOLEBOOKS . COM
GAUTENG DEPARTMENT		SENIOR SECOND	ARY INTERVENTION PROGRAMME
MATHEMATICS	GRADE 12	SESSION 9	(TEACHER NOTES)

QUESTION 2

Ι

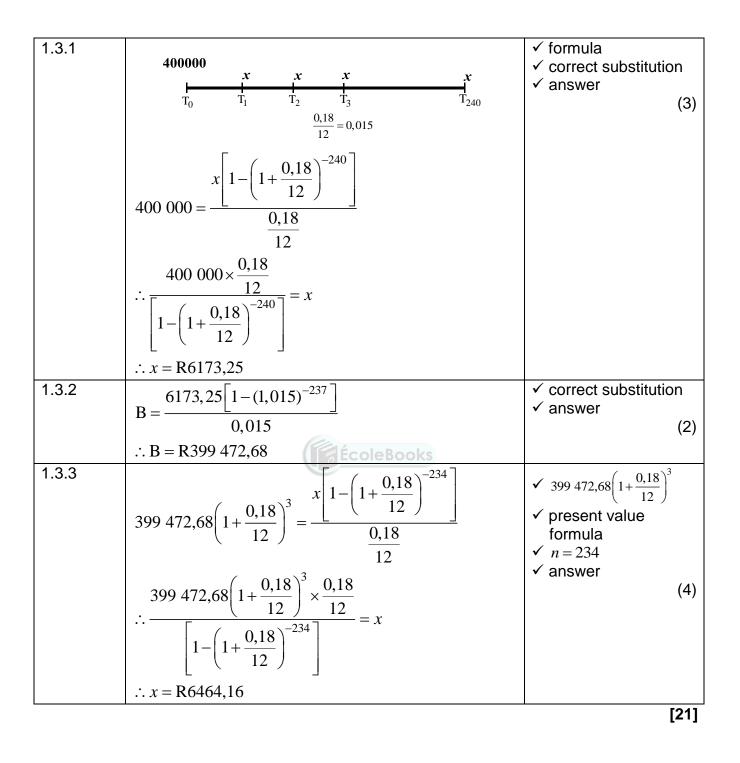
	$= n^2 + 4n + 4$	
	$=\frac{1}{2}n^{2}+\frac{3}{2}n+1+\frac{1}{2}n^{2}+n+\frac{1}{2}+\frac{3}{2}n+\frac{3}{2}+1$	(4)
	$=\frac{1}{2}n^{2} + \frac{3}{2}n + 1 + \frac{1}{2}(n^{2} + 2n + 1) + \frac{3}{2}n + \frac{3}{2} + 1$	$\checkmark (n+2)^2$
		✓ expanding ✓ $n^2 + 4n + 4$
2.3	$\left(\frac{1}{2}n^2 + \frac{3}{2}n + 1\right) + \left(\frac{1}{2}(n+1)^2 + \frac{3}{2}(n+1) + 1\right)$	\checkmark T _n + T _{n+1}
	$\therefore \mathbf{T}_n = \frac{1}{2}n^2 + \frac{3}{2}n + 1$	
	$\therefore c = 1$	
	$\therefore \frac{1}{2} + \frac{3}{2} + c = 3$	
	a+b+c=3	
	$\therefore b = \frac{3}{2}$ ÉcoleBooks	
		^{<i>n</i>} 2 2 (5)
	$\therefore 3\left(\frac{1}{2}\right) + b = 3$	$\checkmark T_n = \frac{1}{2}n^2 + \frac{3}{2}n + 1$
	3a + b = 3	$\checkmark 2$ $\checkmark c = 1$
	$\therefore a = \frac{1}{2}$	$\checkmark a = \frac{1}{2}$ $\checkmark b = \frac{3}{2}$
	2a=1	$\checkmark a = \frac{1}{2}$
2.2	3;6;10;15;21;	✓3;6;10;15;21;
	$\therefore -2b = -30$ $\therefore b = 15$	
	$\therefore 21 - b - b + 10 = 1$	
	(21-b) - (b-10) = 1	
	$\therefore a = 6$	(4)
	$\therefore -2a = -12$	$\checkmark b = 15 \tag{4}$
	(10-a)-(a-3)-1 $\therefore 10-a-a+3=1$	$\checkmark (21-b) - (b-10) = 1$
2.1	$3; a; 10; b; 21; \dots$ (10-a)-(a-3) = 1	$\checkmark (10-a) - (a-3) = 1$ $\checkmark a = 6$

MATHEMATICS SESSION 9 (TEACHER NOTES) GRADE 12

TOPIC 2: FINANCIAL MATHEMATICS

QUESTION 1

1.1	A = P(1-i) ⁿ ∴ 90 000 = 200 000(1-0,08) ⁿ ∴ 90 000 = 200 000(0,92) ⁿ ∴ $\frac{90\ 000}{200\ 000} = (0,92)^n$ ∴ $0,45 = (0,92)^n$ ∴ $\log_{0,92} 0,45 = n$ ∴ $n = 9,576544593$ It will take approximately 9 years 7 months to depreciate to R90 000.	 ✓ correct formula ✓ correct substitution ✓ use of logs ✓ value of n (4)
1.2.1	$F = \frac{2000 2000 2000 2000 2000 2000 2000}{T_0 T_1 T_2 T_3 T_60}$ $F = \frac{2000 \left[\left(1 + \frac{0,06}{12} \right)^{61} - 1 \right]}{\frac{0,06}{12}}$ $\therefore F = R142 \ 237,76$	✓ correct formula ✓ $\frac{0,06}{12}$ ✓ value of <i>n</i> ✓ answer (4)
1.2.2	$F = \frac{2000 2000 2000 2000 2000 F}{T_0 T_1 T_2 T_3 T_{58} T_{59} T_{60}}$ $= \frac{2000 \left[\left(1 + \frac{0,06}{12} \right)^{59} - 1 \right]}{\frac{0,06}{12}} \cdot \left(1 + \frac{0,06}{12} \right)^2$ $\therefore F = R138 \ 227,76$	✓ correct annuity formula ✓ $n = 59$ ✓ $\left(1 + \frac{0,06}{12}\right)^2$ ✓ answer (4)

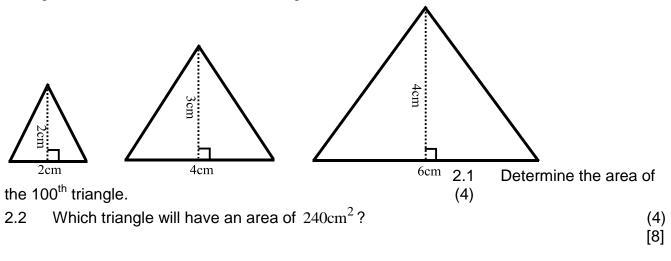

MATHEMATICS

Ι

GRADE 12

SESSION 9

(TEACHER NOTES)



		like the non s			
IATH	IEMATICS GRADE	12	SESSION 9	(TEACHER NOTES	S)
SEC	TION C: HOMEWORK				
ΌΡΙ	C 1: NUMBER PATTER	NS, SEQUEN	ICES AND SERI	ES	
QUE	STION 1				
		17			
.1	Calculate the value of	$\sum_{n=2}^{17} 10$			(1
.2				n the first row and 136 seat	S
	in the last row. The number		he first row, seco	nd row, third row and so	
	forth forms an arithmetic se				
	1.2.1 Determine the numb	er of seats in	h the second row.		(4
	1.2.1Determine the number1.2.2Determine the total r			um.	
.3	1.2.2 Determine the total r The sequence 12; <i>x</i> ;	number of se is a converge	ats in the auditori		
.3	1.2.2 Determine the total r The sequence $12; x; \dots$ sum to infinity is equal to 24	number of se is a converge 4.	ats in the auditori		(1
.3	1.2.2 Determine the total r The sequence $12; x;$ sum to infinity is equal to 24 1.3.1 Determine the value	number of se is a converge 4. of <i>x</i> .	eats in the auditori ent geometric sec	quence in which the	(4 (1 (3
1.3	1.2.2 Determine the total r The sequence $12; x; \dots$ sum to infinity is equal to 24	number of se is a converge 4. of <i>x</i> .	eats in the auditori ent geometric sec	quence in which the	(1

QUESTION 2

D

A sequence of isosceles triangles is drawn. The first triangle has a base of 2cm and height of 2cm. The second triangle has a base that is 2cm longer than the base of the first triangle. The height of the second triangle is 1cm longer than the height of the first triangle. This pattern of enlargement will continue with each triangle that follows.

I		like this on ECOLEBOOKS.COM
	GAUTENG DEPARTMENT OF EDUCATION	SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS GRADE 12 SESSION 9 (TEACHER NOTES)

TOPIC 2: FINANCIAL MATHEMATICS

QUESTION 1

- 1.1 Joshua takes out a retirement annuity that will supplement his pension when he retires in thirty years' time. He estimates that he will need R3000 000 in this retirement fund at that stage. The interest rate he earns is 12% per annum compounded monthly. Calculate his monthly payment into this fund if he starts paying immediately and makes his final payment in 20 years' time. (3)
- 1.2 Mpho takes out a bank loan for R250 000. The interest rate charged by the bank is 18,5% per annum compounded monthly.
 - 1.2.1 What will his monthly repayment be if he pays the loan back over five years, starting **FOUR** months after the granting of the loan?
 - 1.2.2 Calculate the balance outstanding after the 25th repayment.
 - (5) [13]

(5)

SECTION D: SOLUTIONS AND HINTS TO HOMEWORK

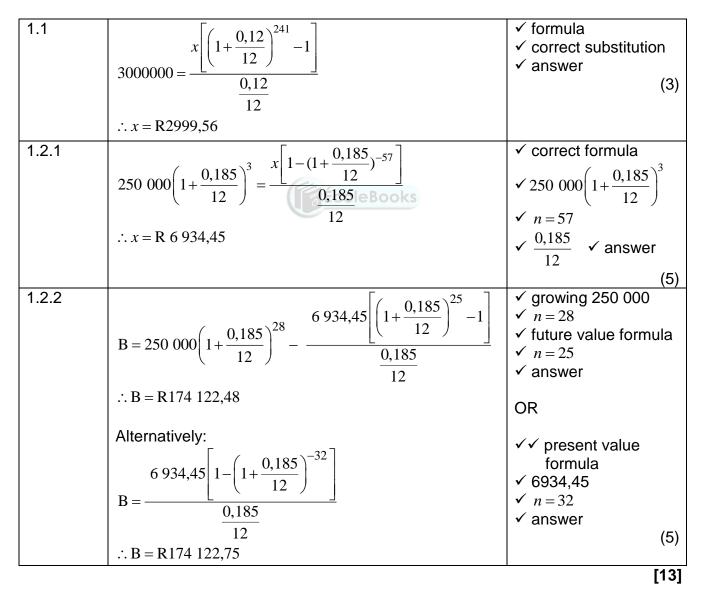
TOPIC 1: NUMBER PATTERNS, SEQUENCES AND SERIES

QUESTION 1

ÉcoleBooks

1.1	$\sum_{r=3}^{17} 10 = (\text{number of terms}) \times 10$	✓ 150 (1)
	$=(17-3+1)\times 10$	
	$=15 \times 10$	
	=150	
1.2.1	a = 20	$\checkmark a = 20$
	a + (n-1)d = 136	✓ $20+29d=136$ ✓ $d=4$
	$\therefore 20 + (30 - 1)d = 136$	\checkmark <i>u</i> = 4 \checkmark 24 seats in second
	$\therefore 20 + 29d = 136$	row
	$\therefore 29d = 116$	✓ $S_{30} = 2340$
	$\therefore d = 4$	(4)
	There are 24 seats in the second row.	
1.2.2	$S_{30} = \frac{30}{2} [20 + 136] = 2340$ seats	✓ $S_{30} = 2340$ (1)

MATHEMATIC	S GRAD	DE 12	SESSION 9	(TEACHER NO	TES)
1.3.1	$r = \frac{x}{12}$ $\frac{12}{1 - \frac{x}{12}} = 24$ $\therefore 12 = 24 \left(1 - \frac{x}{12}\right)$ $\therefore 12 = 24 - 2x$ $\therefore 2x = 12$			$\checkmark r = \frac{x}{12}$ $\checkmark \frac{12}{1 - \frac{x}{12}} = 24$ $\checkmark x = 6$	(3)
	$\therefore x = 6$ $12\left(\frac{1}{2}\right)^{n-1} = \frac{3}{128}$ $\therefore \left(\frac{1}{2}\right)^{n-1} = \frac{1}{512}$ $\therefore \left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^9$ $\therefore n-1=9$ $\therefore n=10$			✓ $12\left(\frac{1}{2}\right)^{n-1} = \frac{3}{128}$ ✓ $\left(\frac{1}{2}\right)^{n-1} = \frac{1}{512}$ ✓ $n = 10$	(3) [12]
		Écol	eBooks		
2.1	Area of triangle 1:	$\frac{1}{-(2cm)(2cm)}$	$=(1)(2)cm^{2}$	✓ determining area	as


2.1	Area of triangle 1:	$\frac{1}{2}(2cm)(2cm) = (1)(2)cm^2$	✓ determining areas✓ establishing pattern
	Area of triangle 2:	$\frac{1}{2}(4cm)(3cm) = (2)(3)cm^2$	 ✓ obtaining general term
		1	✓ area of 100 th triangle
	Area of triangle 3:	$\frac{1}{2}(6cm)(4cm) = (3)(4)cm^2$	(4)
	Area of triangle 4:	$\frac{1}{2}(8cm)(5cm) = (4)(5)cm^2$	
	The areas form the	following pattern:	
	(1)(2);(2)(3);(3)(4);(
	Area of triangle <i>n</i> :	$(n)(n+1)cm^2$	
	Area of triangle 100:	$(100)(100+1)cm^2 = 10100cm^2$	

MATHEMATIC	S GRADE 12	SESSION 9	(TEACHER NOTES	S)
2.2	n(n+1) = 240 $\therefore n^2 + n - 240 = 0$ $\therefore (n+16)(n-15) = 0$ $\therefore n = -16$ or $n = 15$ But $n \neq -16$ $\therefore n = 15$		✓ correct <i>a</i> and <i>d</i> ✓ correct <i>n</i> ✓ S_n formula ✓ correct answer	(4)
	The 15th triangle will have an ar	ea of $240 \mathrm{cm}^2$	[8]

TOPIC 2: FINANCIAL MATHEMATICS

QUESTION 1

MATHEMATICS

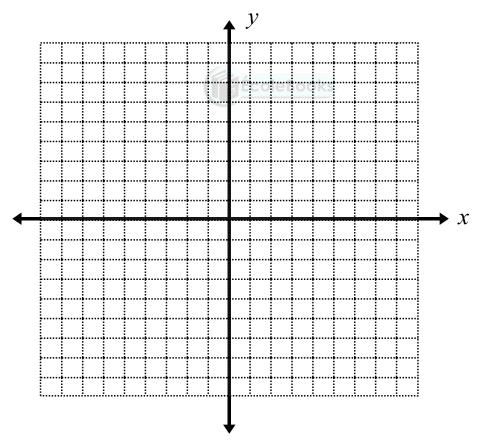
GRADE 12

SESSION 10

(TEACHER NOTES)

TOPIC : TRANSFORMATIONS

Teacher note: Transformations are easy to master and learners should score well in questions involving this topic. Ensure that they know the different algebraic transformation rules.


LESSON OVERVIEW

- 1. Introduction session: 5 minutes
- Typical exam questions: Question 1: 30 minutes Question 2: 10 minutes
 Discussion of solutions 45 minutes
- 3. Discussion of solutions 45 minutes

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1 30 minutes 16 marks

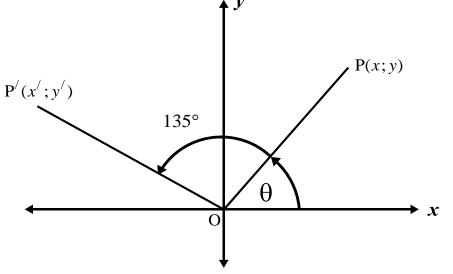
1.1 On the diagram below, represent the point A(-3;2).

1.2 Now represent the following points on the diagram provided above: Point B, the rotation of point A, **90**° anticlockwise about the origin. Point C, the rotation of point A, **180**° about the origin. Point D, the rotation of point A, **90**° clockwise about the origin.

(3)

Dow	nload mor	e resources	like this on	ECOLEBOOKS . COM	
матн		GRADE 12	SESSION 10	(TEACHER NOT	ES)
1.3	Write down al	gebraic rules to desci	ribe the above transfe	ormations.	(3)
1.4	What type of quadrilaterals		ABCD? Explain by re	eferring to the properties of	(2)
1.5	•			ough the origin to form its ious page, sketch the image	9
		d indicate the coordina			(2)
1.6	Determine the	e ratio: Area ABCD Area A [/] B [/] C [/] D	$\overline{\prime}$		(1)
1.7	ABCD is refle	cted about the y-axis	to form its image EF	GH.	
	1.7.1 Write c	lown the coordinates	of E.		(1)
	1.7.2 Determ	nine the ratio: Perime	eter ABCD eter EFGH		(1)
1.8			ic notation, the single	transformations involved if	
	$(x;y) \rightarrow \left(\frac{1}{2}x\right)$	$c;-\frac{1}{2}y-1\bigg)$			(3)

QUESTION 2


Ι

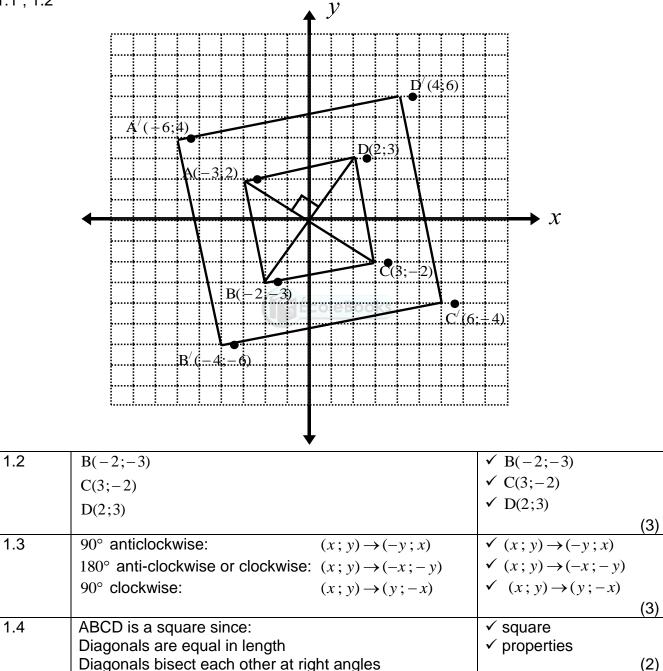
10 minutes

6 marks

2.1 Show that the coordinates of \mathbf{P}' , the image of $\mathbf{P}(x; y)$ rotated about the origin through an angle of 135°, in the anti-clockwise direction, is given by:

2.2 M' is the image of M(2;4) under a rotation about the origin through 135°, in the anticlockwise direction.

MATHEMATICS GRADE 12 SESSION 10 (TEACHER NOTES)


Determine the coordinates of \mathbf{M}^{\prime} , using the results in (a)

(2)

SECTION B: SOLUTIONS AND HINTS TO SECTION A

QUESTION 1

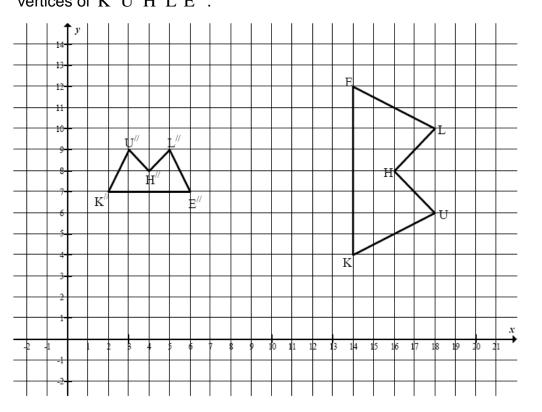
1.1 ; 1.2

SESSION 10

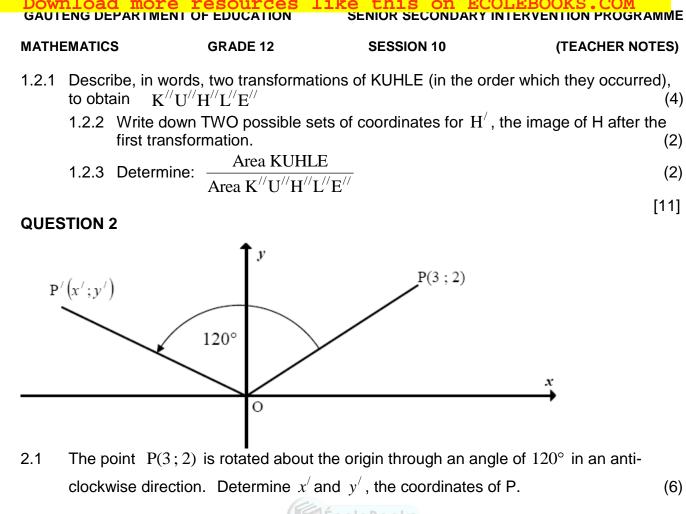
(TEACHER NOTES)

MATHEMAT	ICS GRADE 12 SESSION 10	(TEACHER NOTES)
1.5	$A^{/}(-6;4)$ $B^{/}(-4;-6)$ $C^{/}(6;-4)$ $D^{/}(4;6)$ See diagram	 ✓ correct coordinates indicated ✓ joining points to form enlarged square (2)
1.6	$\frac{\text{Area ABCD}}{\text{Area A}'\text{B}'\text{C}'\text{D}'} = \frac{1}{2^2} = \frac{1}{4}$	$\checkmark \frac{1}{4}$ (1)
1.7.1	E(3;2)	✓ answer (1)
1.7.2	$\frac{\text{Perimeter ABCD}}{\text{Perimeter EFGH}} = \frac{4 \times \text{side AB}}{4 \times \text{side EF}} = 1$ (since AB = EF)	✓ answer (1)
1.8	$(x; y) \rightarrow \left(\frac{1}{2}x; \frac{1}{2}y\right) \text{reduction by a factor of } \frac{1}{2}$ $\left(\frac{1}{2}x; \frac{1}{2}y\right) \rightarrow \left(\frac{1}{2}x; -\frac{1}{2}y\right) \text{reflection about } x - \text{axis}$ $\left(\frac{1}{2}x; -\frac{1}{2}y\right) \rightarrow \left(\frac{1}{2}x; -\frac{1}{2}y - 1\right) \text{translation 1 unit downward}$ $\therefore (x; y) \rightarrow \left(\frac{1}{2}x; -\frac{1}{2}y - 1\right) \text{fields}$	 ✓ reduction ✓ reflection ✓ translation (3)
		[16]

2.1	$x' = x\cos(135^\circ) - y\sin(135^\circ)$	$\checkmark x' = x\cos(135^\circ) - y\sin(135^\circ)$
	$x' = -x\cos 45^\circ - y\sin 45^\circ$	$\checkmark x' = -\frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y$
	$x' = x \left(\frac{-\sqrt{2}}{2}\right) - y \left(\frac{\sqrt{2}}{2}\right)$	$\checkmark y' = y\cos(135^\circ) + x\sin(135^\circ)$
	$x' = -\frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y$	$\checkmark y' = -\frac{\sqrt{2}}{2}y + \frac{\sqrt{2}}{2}x$ (4)
	$y' = y\cos(135^\circ) + x\sin(135^\circ)$	
	$y' = -y\cos 45^\circ + x\sin 45^\circ$	
	$y' = y\left(-\frac{\sqrt{2}}{2}\right) + x\left(\frac{\sqrt{2}}{2}\right)$	
	$y' = -\frac{\sqrt{2}}{2}y + \frac{\sqrt{2}}{2}x$	



MATHEMATICS		GRADE 12	SESSION 10	(TEACHER NOTES)
2.2	$x' = -\frac{\sqrt{2}}{2}(2)$ $x' = -\sqrt{2} - 2\sqrt{2}$ $x' = -3\sqrt{2}$ $y' = -\frac{\sqrt{2}}{2}(4)$	2		
	$y' = -\sqrt{2}$ $\therefore M(-3\sqrt{2}; -\sqrt{2})$	(2)		[6]


SECTION C: HOMEWORK

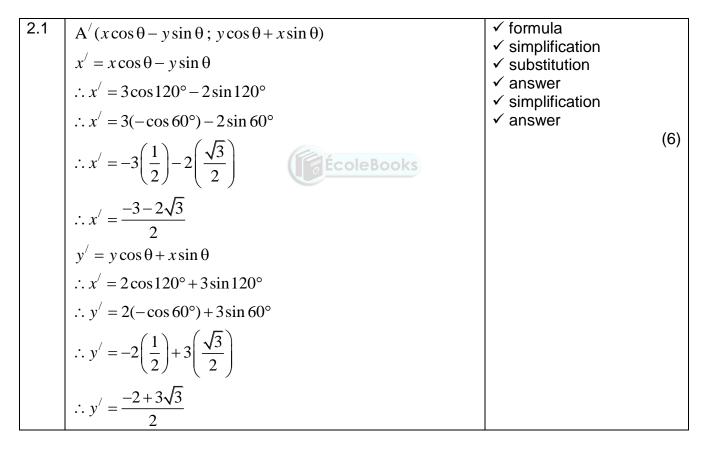
QUESTION 1

- 1.1 The point P(-2;5) lies in a Cartesian plane. Determine the coordinates of P', the image of P if:
 - 1.1.1 P is reflected about the line y = x
 - 1.1.2 P has been rotated about the origin through 90° in a clockwise direction. (2)
- 1.2 KUHLE has undergone two transformations to obtain K''U''H''L''E''. K''(2;7), U''(3;9), H''(4;8), L''(5;9) and E''(6;7) are the coordinates of the vertices of K''U''H''L''E''.

(1)

2.2 The same rotation sends a point Q into (-2; 0). Determine the coordinates of Q, (4)

[10]


SECTION D: SOLUTIONS TO HOMEWORK SESSION 6

QUESTION 1

1.1.1	P'(5;-2)	✓ answer	(1)
1.1.2	P'(5;2)	 ✓ x-coordinate ✓ y-coordinate 	(-)
			(2)
1.2.1	Reduction by a scale factor of $\frac{1}{2}$:	✓✓ reduction✓✓ reflection	
	$(x; y) \rightarrow \left(\frac{1}{2}x; \frac{1}{2}y\right)$		(4)
	Reflection about the line $y = x$		
	$\left(\frac{1}{2}x;\frac{1}{2}y\right) \rightarrow \left(\frac{1}{2}y;\frac{1}{2}x\right)$		
	$\therefore (x; y) \rightarrow \left(\frac{1}{2}y; \frac{1}{2}x\right)$		

MATHEM	ATICS GRADE 12 SESSIO	N 10 (TEACHER NOTES)
1.2.2	If the first transformation is the reflection, then: $H^{7}(8;16)$ If the first transformation is the reduction, then: $H^{7}(8;4)$	\checkmark H ^(8,10) \checkmark H ^(8,4)
1.2.3	$\frac{\text{Area of original}}{\text{Area of image}} = \frac{1}{k^2}$. <u>Area KUHLE</u>	√√ answer (2)
	Area of image k^2 $\therefore \frac{\text{Area KUHLE}}{\text{Area K}^{//}\text{U}^{//}\text{H}^{//}\text{L}^{//}\text{E}^{//}} = \frac{1}{\left(\frac{1}{2}\right)^2} = 4$ $\therefore \text{Area KUHLE}'': \text{Area K}^{//}\text{U}^{//}\text{H}^{//}\text{L}^{//}\text{E}^{//} = 4:1$	[11]

MATHEMATICS	GRADE 12	SESSION 10	(TEACHER NOTES)
$-2 = x \cos 12$ $-2 = x \left(-\frac{1}{2}\right)$	$Q'(x\cos 120^\circ - y\sin 120)$ $Q'(x\cos 120^\circ - y\sin 120)$ $Q'(x\cos 120^\circ - y\sin 120)$ and $0 = y$ $\int -y\left(\frac{\sqrt{3}}{2}\right) \text{ and } 0 = -y$ $\int y \text{ and } y = \sqrt{3}$ $Q'(\sqrt{3}x)$	$\frac{1}{2} \cos 120^\circ + x \sin 120^\circ$ $\left(-\frac{1}{2}\right) + x \left(\frac{\sqrt{3}}{2}\right)$ $y + \sqrt{3}x$	✓ $-2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$ ✓ $0 = y\left(-\frac{1}{2}\right) + x\left(\frac{\sqrt{3}}{2}\right)$ ✓ x-coordinate ✓ y-coordinate (4)
			[10]

Page 83 of 123

MATHEMATICS

GRADE 12

SESSION 11

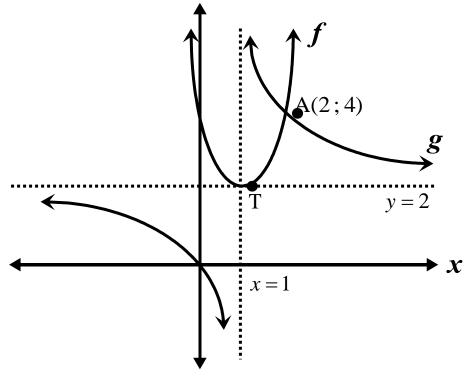
(TEACHER NOTES)

TOPIC : FUNCTIONS AND GRAPHS

Teacher Note: Functions form a large part of Paper 1 and learners should score well in questions involving this topic. Ensure that they know how to link transformation rules to these graphs.

LESSON OVERVIEW

- 1. Introduction session: 5 minutes
- Typical exam questions: Question 1: 20 minutes Question 2: 20 minutes
 Discussion of solutions 45 minutes
- 3. Discussion of solutions 45 minutes


SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1: 20 minutes

In the diagram, the graphs of the following functions have been sketched:

$$f(x) = a(x+p)^2 + q$$
 and $g(x) = \frac{a}{x+p} + q$

The two graphs intersect at A(2; 4) and the turning point of the parabola lies at the point of intersection of the asymptotes of the hyperbola. The line x = 1 is the axis of symmetry of the parabola.

1.1 Determine the equation of f(x) in the form $y = a(x+p)^2 + q$ (3)

Dow GAU	mload more ENG DEPARTMENT	resources like	this on ECOL	EBOOKS . COM ERVENTION PROGRAMME
MATH	IEMATICS	GRADE 12	SESSION 11	(TEACHER NOTES)
1.2	Determine the e	quation of $g(x)$ in the for	$m y = \frac{a}{x+p} + q$	(3)
1.3	Write down the r	ange for the graph of f.		(1)
1.4	If the graph of f	is shifted 1 unit left and	2 units downwards, wr	ite down the
	equation of the r	ew graph formed.		(2)
1.5	Write down the v	values of x for which $g(x)$)≤0	(2) [11]
QUE	STION 2: 20	minutes		
	5 ()	-8 and $h(x) = 4^x$		
2.1	• •	ns of <i>h</i> and <i>f</i> on the dia prcepts with the axes and	•	(9)
2.2	0 1	s shifted 2 units to the Ll equation of the new grap		(1)
2.3	Show, algebraic	ally, that $h\left(x+\frac{1}{2}\right)=2h(x)$	x).	(3)
				[13]
SEC	CTION B: SOLUTI	ONS AND HINTS TO SE	CTION A	

QUESTION 1

I

1.1	For the graph of $f(x) = a(x+p)^2 + q$ Substitute the turning point T(1; 2):	✓ $y = a(x-1)^2 + 2$ ✓ $a = 2$	
	$y = a(x-1)^2 + 2$	✓ $y = 2(x-1)^2 + 2$	
	Substitute the point $A(2;4)$:		(3)
	$4 = a(2-1)^2 + 2$		
	$\therefore 4 = a + 2$		
	$\therefore a = 2$ The equation of the parabola is therefore:		
	$y = 2(x-1)^2 + 2$		

MATHEMATICS	GRAD	E 12	SESSION 11	(TEACHER NOT	FES
	For the graph of $g(x) =$ The vertical asymptote asymptote is $y = 2$. $\therefore y = \frac{a}{x-1} + 2$ Substitute the point Act $\therefore 4 = \frac{a}{2-1} + 2$ $\therefore 4 = a + 2$ $\therefore a = 2$ The equation of the hy $y = \frac{2}{x-1} + 2$	e is $x = 1$ and the (2;4):		✓ $y = \frac{a}{x-1} + 2$ ✓ $a = 2$ ✓ $y = \frac{2}{x-1} + 2$	(3
1.3	Range: $y \in [2]$	2;∞)		$\checkmark y \in [2;\infty)$	(1
	y = 2((x+1)-1) ² +2-2 ∴ y = 2x ²	2		✓ adding 1 to x and subtracting 2 ✓ $y = 2x^2$	(2
1.5	$g(x) \le 0$ $\therefore 0 \le x < 1$	ÉcoleBoo	oks	✓ ✓ answers	(2)
				۱ــــــــــــــــــــــــــــــــــــ	[11]

MATHEMATICS

GRADE 12

SESSION 11

(TEACHER NOTES)

QUESTION 2

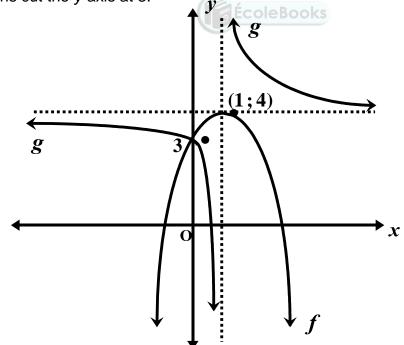
2.1	$f(x) = 2(x-1)^{2} - 8$ Turning point: (1;-8) x-intercepts of parabola: $0 = 2(x-1)^{2} - 8$ $8 = 2(x-1)^{2}$ $4 = (x-1)^{2}$ 2 = x-1 or $-2 = x-1x = 3$ or $x = -1y-intercept of parabola: y = 2(0-1)^{2} - 8 = -6f(1;4)$	For $f(x) = 2(x-1)^2 - 8$ \checkmark turning point \checkmark shape \checkmark axis of symmetry \checkmark y-intercept $\checkmark \checkmark$ x-intercepts For $h(x) = 4^x$ \checkmark y-intercept \checkmark shape \checkmark coordinates (9)
2.2	y = 2(x-1+2) ² -8 ∴ y = 2(x+1) ² -8	✓ $y = 2(x+1)^2 - 8$ (1)
2.3	$h\left(x+\frac{1}{2}\right)$ = $4^{x+\frac{1}{2}} = 4^{x} \cdot 4^{\frac{1}{2}} = (4^{x}) \cdot 2 = 2h(x)$	✓ $4^{x+\frac{1}{2}}$ ✓ $4^{x}.4^{\frac{1}{2}}$ ✓ $(4^{x}).2 = 2h(x)$ [13]
		[ເວ]

MATHEMATICS	GRADE 12	SESSION 11	(TEACHER NOTES)
-------------	----------	-------------------	-----------------

SECTION C: HOMEWORK

QUESTION 1

Given: $f(x) = \frac{2}{x+1}$


- Write down the equations of the asymptotes.
 Sketch the graph of *f* indicating the coordinates of the *y*-intercept as well as the asymptotes.
- 1.3 Write down the equation of the graph formed if the graph of f is shifted 3 units right and 2 units upwards. (2)
- 1.4 Determine graphically the values of *x* for which $\frac{2}{x+1} \ge 1$

QUESTION 2

In the diagram below, the graphs of the following functions are represented:

 $f(x) = a(x+p)^2 + q$ and $g(x) = \frac{a}{x+p} + q$

The turning point of f is (1; 4) and the asymptotes of g intersect at the turning point of f. Both graphs cut the *y*-axis at 3.

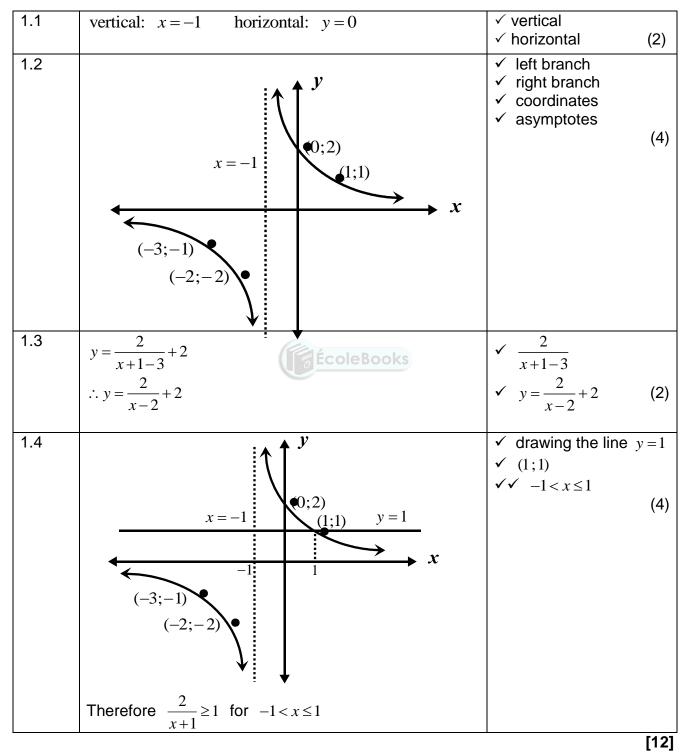
2.1	Determine the equation of f.	(4)
2.2	Determine the equation of g.	(4)
2.3	Determine the coordinates of the <i>x</i> -intercept of <i>g</i> .	(3)
2.4	For which values of x will $g(x) \le 0$?	(2)
		[13]

(2)

(4)

(4)

[12]


MATHEMATICS GRADE 12

SESSION 11

(TEACHER NOTES)

SECTION D: SOLUTIONS TO HOMEWORK

QUESTION 1

МАТНЕМАТ	ICS	GRADE 12	SESSION 11	(TEACHER NO	DTES
QUESTIO	N 2				
2.1	$y = a(x-1)^2 + 4$			$\checkmark y = a(x-1)^2 + 4$	
S	Substitute (0;3)			✓ $3 = a(0-1)^2 + 4$	
	$3 = a(0-1)^2 + 4$			✓ $a = -1$ ✓ $f(x) = -(x-1)^2 + 4$	
	: 3 = a + 4			✓ $f(x) = -(x-1)^2 + 4$	
	: $a = -1$				(4
	$f(x) = -(x-1)^2 +$	4			
2.2	$y = \frac{a}{x-1} + 4$			$\checkmark \checkmark y = \frac{a}{x-1} + 4$ $\checkmark a = 1$ $\checkmark g(x) = \frac{1}{x-1} + 4$	
	x-1 Substitute (0; 3)			x - 1	
				$\begin{bmatrix} a & -1 \\ a & (x) & -1 \end{bmatrix}$	
	$: 3 = \frac{a}{0-1} + 4$			$y = g(x) - \frac{1}{x-1} + 4$	
	$\therefore 3 = -a + 4$				(4
	:. <i>a</i> = 1				
	$\therefore g(x) = \frac{1}{x-1} + 4$				
2.3	$g(x) = \frac{1}{x-1} + 4$ $g(x) = \frac{1}{x-1} + 4$			$\checkmark 0 = \frac{1}{x-1} + 4$ $\checkmark x = \frac{3}{4}$	
	x - 1 : 0 = 1 + 4(x - 1)	Écol	leBooks	$\begin{array}{c} x - 1 \\ 3 \end{array}$	
	: 0 = 1 + 4x - 4			$\mathbf{v} x = -\frac{1}{4}$	
	0 = 4x - 3			$\checkmark \left(\frac{3}{4};0\right)$	
	$\therefore -4x = -3$			(4)	(3
	$\therefore x = \frac{3}{4}$				(0
	4				
	$\left(\frac{3}{4};0\right)$				
2.4	$g(x) \le 0$ for $0 \le x <$	<u>_</u> 3		$\checkmark x \ge 0$	
à	$g(x) \leq 0$ for $0 \leq x <$	$\overline{4}$		$\checkmark x < \frac{3}{4}$	
				4	(2
				I	[13

SCI-BONO

MATHEMATICS

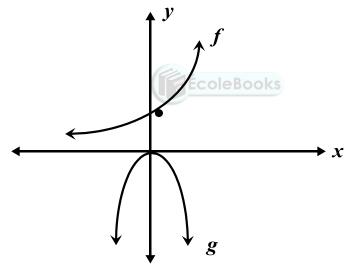
Ι

GRADE 12

SESSION 12

(TEACHER NOTES)

TOPIC : INVERSE GRAPHS


Teacher Note: Functions form a large part of Paper 1 and learners should score well in questions involving this topic. Ensure that they know how to link transformation rules to these graphs.

LESSON OVERVIEW

- Introduction session 5 minutes
 Typical exam questions:
- Typical exam questions: Question 1: 40 minutes
 Discussion of solutions 45 minutes
- SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1: 40 minutes

Sketched below are the graphs of $f(x) = 3^x$ and $g(x) = -x^2$

1.1 Write down the equation of the inverse of the graph of $f(x) = 3^x$ in the form $f^{-1}(x) = \dots$

- 1.2 On a set of axes, draw the graph of the inverse of $f(x) = 3^x$ (2)
- 1.3 Write down the domain of the graph of $f^{-1}(x)$ (1)
- 1.4 Explain why the inverse of the graph of $g(x) = -x^2$ is not a function. (1)
- 1.5 Consider the graph of $g(x) = -x^2$
 - 1.5.1 Write down a possible restriction for the domain of $g(x) = -x^2$ so that the inverse of the graph of *g* will now be a function. (1)
 - 1.5.2 Hence draw the graph of the inverse function in 2.5.1 (2)

(2)

MATHEMATICS GRADE 12 SESSION 12 (TEACHER NOTES)

1.6 Explain how, using the transformation of the graph of *f*, you would sketch the graphs of:

1.6.1
$$h(x) = -\log_3 x$$
 (2)

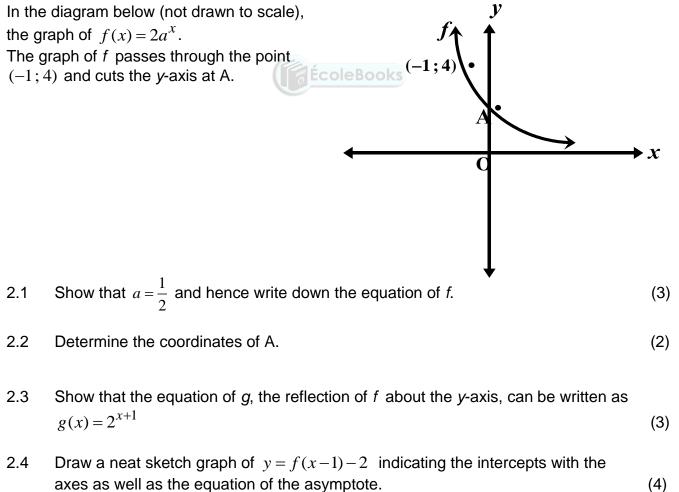
1.6.2
$$p(x) = \left(\frac{1}{3}\right)^x + 1$$
 (2)

1.7 Sketch the graph of
$$p(x) = \left(\frac{1}{3}\right)^x + 1$$
 on a set of axes. (3)
[16]

SECTION B: SOLUTIONS AND HINTS TO SECTION A

1.1	$y = 3^{x}$ $\therefore x = 3^{y}$ $\therefore \log_{3} x = y$ $\therefore f^{-1}(x) = \log_{3} x$	✓ $x=3^y$ ✓ $f^{-1}(x) = \log_3 x$	(2)
1.2	f ⁻¹	 ✓ shape ✓ (1;0) 	(2)
	(1;0)		
1.3	Domain: $x \in (0; \infty)$	$\checkmark x \in (0;\infty)$	(1)
1.4	The inverse is a one-to-many relation, which is not a function.	✓ one-to-many	(1)

MATHEMATICS	GRADE 12 SESSION 12	(TEACHER NOTES)
$\begin{array}{ c c c c } 1.5.1 & x \ge 0 \\ OR \\ x \le 0 \end{array}$		✓ answer (1)
1.5.2	$x \ge 0$	$\xrightarrow{\checkmark} x $ (2)
$y = \log_3$ $\therefore -y = 1$	y = y (reflection about the line $y = x$) y = x	✓ reflection about y = x ✓ reflection about x- axis (2)
1.6.2 $y = 3^x$ $\therefore y = 3^-$ $\therefore y = \left(\frac{1}{2}\right)^x$	- x (Reflection about the y-axis)	 ✓ reflection about <i>y</i>-axis ✓ translation (2)
1.7 y	$=\left(\frac{1}{3}\right)^{x} + 1$ $y = \left(\frac{1}{3}\right)^{x}$ $(0; 2)$ $y = 3^{x}$	 ✓✓ decreasing shape ✓ y-intercept (3) • x [16]


SECTION C: HOMEWORK

QUESTION 1

Consider the functions: $f(x) = 2x^2$ and $g(x) = \left(\frac{1}{2}\right)^x$

1.1	Restrict the domain of f in one specific way so that the inverse	
	of f will also be a function.	(1)
1.2	Hence draw the graph of your new function <i>f</i> and its inverse	
	function f^{-1} on the same set of axes.	(2)
1.3	Write the inverse of g in the form $g^{-1}(x) = \dots$	(2)
1.4	Sketch the graph of g^{-1} .	(2)
1.5	Determine graphically the values of x for which $\log_{\frac{1}{2}} x < 0$	(1)

QUESTION 2

[12]

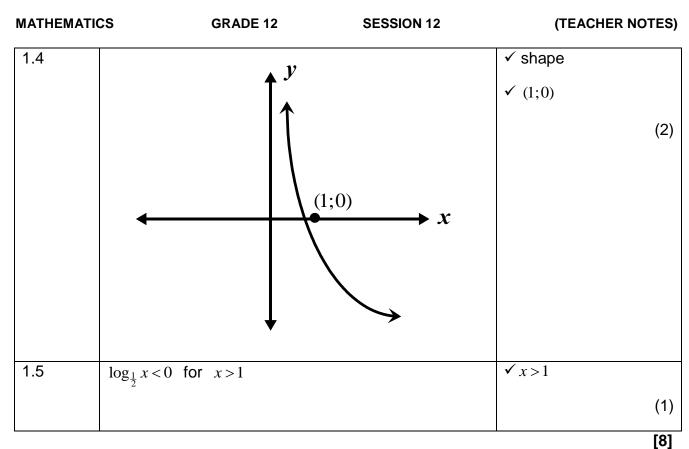
[8]

MATHEMATICS

GRADE 12

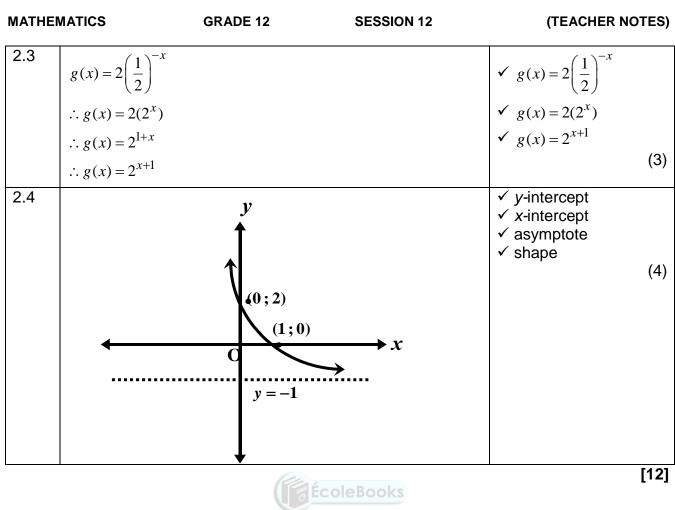
SESSION 12

(TEACHER NOTES)


SECTION D: SOLUTIONS TO HOMEWORK

QUESTION 1

1.1	$f(x) = 2x^2$ where $x \ge 0$ OR	$\checkmark x \ge 0 \text{OR} x \le 0$	(1)
	$f(x) = 2x^2$ where $x \le 0$		
1.2	y f f^{-1} $y = x$	$\checkmark f$ $\checkmark f^{-1}$	
	OR f f f f f f f f		(2)
1.3	$y = \left(\frac{1}{2}\right)^{x}$	$\checkmark x = \left(\frac{1}{2}\right)^y$	
	$x = \left(\frac{1}{2}\right)^{y}$ $\therefore \log_{\frac{1}{2}} x = y$ $\therefore g^{-1}(x) = \log_{\frac{1}{2}} x$	$\checkmark g^{-1}(x) = \log_{\frac{1}{2}} x$	(2)
	$\therefore \log_{\frac{1}{2}} x = y$		-
	$\therefore g^{-1}(x) = \log_{\frac{1}{2}} x$		


nload more resources li GAUTENG DEPARTMENT OF EDUCATION Down] like thi OLEBOOKS . COM SENIOR SECONDARY INTERVENTION PROGRAMME

QUESTION 2

$\checkmark 4 = 2a^{-1}$ $\checkmark a = \frac{1}{2}$ $\checkmark f(x) = 2\left(\frac{1}{2}\right)^{x}$ 2.1 $y = 2a^x$ Substitute (-1; 4) $\therefore 4 = 2a^{-1}$ $\therefore 4 = \frac{2}{a}$ $\therefore 4a = 2$ (3) $\therefore a = \frac{1}{2}$ $\therefore f(x) = 2\left(\frac{1}{2}\right)^x$ $y = 2\left(\frac{1}{2}\right)^0 = 2$ 2.2 $\checkmark 2\left(\frac{1}{2}\right)^0$ ✓ (0;2) (0; 2)(2)

Page 97 of 123

TOPIC 1 : CALCULUS – LIMITS AND FIRST PRINCIPLES LESSON OVERVIEW FOR EACH TOPIC 1. Introduction session: 10 minutes 2. Typical exam questions: Question 1: 10 minutes Question 1: 10 minutes Question 2: 10 minutes 3. Discussion of solutions: 15 minutes Teacher Note: Calculus forms a large part of Paper 1 and learners should score questions involving this topic. Ensure that they don't lose marks by using faulty notation SECTION A: TYPICAL EXAM QUESTIONS	
1. Introduction session: 10 minutes 2. Typical exam questions: Question 1: 10 minutes Question 1: 10 minutes Question 2: 10 minutes 3. Discussion of solutions: 15 minutes Teacher Note: Calculus forms a large part of Paper 1 and learners should score questions involving this topic. Ensure that they don't lose marks by using faulty notation SECTION A: TYPICAL EXAM QUESTIONS	
1. Introduction session: 10 minutes 2. Typical exam questions: Question 1: 10 minutes Question 1: 10 minutes Question 2: 10 minutes 3. Discussion of solutions: 15 minutes Teacher Note: Calculus forms a large part of Paper 1 and learners should score questions involving this topic. Ensure that they don't lose marks by using faulty notation SECTION A: TYPICAL EXAM QUESTIONS	
 Typical exam questions: Question 1: 10 minutes Question 2: 10 minutes Discussion of solutions: 15 minutes Teacher Note: Calculus forms a large part of Paper 1 and learners should score questions involving this topic. Ensure that they don't lose marks by using faulty notation SECTION A: TYPICAL EXAM QUESTIONS 	
Question 1: 10 minutes Question 2: 10 minutes 3. Discussion of solutions: 15 minutes Teacher Note: Calculus forms a large part of Paper 1 and learners should score questions involving this topic. Ensure that they don't lose marks by using faulty notation SECTION A: TYPICAL EXAM QUESTIONS	
Question 2: 10 minutes B. Discussion of solutions: 15 minutes Teacher Note: Calculus forms a large part of Paper 1 and learners should score questions involving this topic. Ensure that they don't lose marks by using faulty notation SECTION A: TYPICAL EXAM QUESTIONS	
 Discussion of solutions: 15 minutes Teacher Note: Calculus forms a large part of Paper 1 and learners should score questions involving this topic. Ensure that they don't lose marks by using faulty notation SECTION A: TYPICAL EXAM QUESTIONS 	
Teacher Note: Calculus forms a large part of Paper 1 and learners should score questions involving this topic. Ensure that they don't lose marks by using faulty notations SECTION A: TYPICAL EXAM QUESTIONS	
FOPIC 1 : CALCULUS – LIMITS AND FIRST PRINCIPLESQUESTION 1:10 minutes1.1Given: $f(x) = -2x^2 + 1$	
1.1.1 Determine $f'(x)$ from first principles.	(5
1.1.2 Determine the gradient of the graph at $x = -2$, i.e. $f'(-2)$	(*
1.1.3 Determine $f(-2)$. What does your answer represent?	(2
1.1.4 Determine the average gradient of f between $x = -2$ and $x = 4$	(4
1	,
1.2 Use first principles to determine the derivative of $f(x) = \frac{1}{x}$	(!

QUESTION 2: 10 minutes

- 2.1 Differentiate *f* by first principles where $f(x) = x^2 2x$. (5)
- 2.2 Determine the gradient of the tangent to the graph of $g(x) = x^3$ at x = 3 (6)

[11]

[17]

MATHEMATICS GRADE 12 SESSION 13 (TEACHER NOTES)

TOPIC 2 : CALCULUS – RULES OF DIFFERENTIATION AND TANGENTS

QUESTION 1: 10 minutes

Determine the following and leave your answer with positive exponents:

1.1
$$D_x [(2x-3)(x+4)]$$
 (2)

1.2
$$f'(x)$$
 if $f(x) = \frac{1}{2\sqrt[4]{x^3}}$ (3)

1.3
$$\frac{dy}{dx} \text{ if } y = \left(2\sqrt{x} - \frac{1}{3x}\right)^2 \tag{5}$$

1.4
$$D_x \left[\frac{1}{\sqrt{x}} \left(x^3 - 2x^2 + 3x \right) \right]$$
 (4)

QUESTION 2: 10 minutes

- 2.1 Determine the equation of the tangent to $f(x) = x^2 6x + 5$ at x = 2. (5)
- 2.2 Find the equation of the tangent to $f(x) = 3x^2 5x + 1$ which is parallel to the line y-7x+4=0. (6)

[14]

MATHEMATICS GRADE 12 SESSION 13 (TEACHER NOTES)

SECTION B: SOLUTIONS AND HINTS TO SECTION A - TOPICS 1&2

TOPIC 1 : CALCULUS – LIMITS AND FIRST PRINCIPLES

1.1.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{-2(x+h)^2 + 1 - (-2x^2 + 1)}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{-2(x^2 + 2xh + h^2) + 1 + 2x^2 - 1}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{-2x^2 - 4xh - 2h^2 + 1 + 2x^2 - 1}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{h(-4x - 2h)}{h}$ $\therefore f'(x) = \lim_{h \to 0} (-4x - 2h)$ $\therefore f'(x) = -4x - 2(0)$ $\therefore f'(x) = -4x$	
1.1.2	f'(x) = -4x :. $f'(-2) = -4(-2) = 8$	✓ answer (1)
1.1.3	$f(x) = -2x^{2} + 1$ $\therefore f(-2) = -2(-2)^{2} + 1$ $\therefore f(-2) = -7$ The answer represents the y-value corresponding to $x = -2$	✓ $f(-2) = -7$ ✓ interpretation (2)

MATHEMATICS	GRADE 12	SESSION 13	(TEACHER NOTES)
	$f(x) = -2x^{2} + 1$ $f(-2) = -2(-2)^{2} + 1$ $\therefore f(-2) = -7$ $f(4) = -2(4)^{2} + 1$ $\therefore f(4) = -31$ (-2; -7) and (4; -31) Average gradient = $\frac{-31 - (-7)^{2}}{4 - (-2)^{2}}$	$\frac{7}{2} = \frac{-24}{6} = -4$	✓ $f(-2) = -7$ ✓ $f(4) = -31$ ✓ $\frac{-31 - (-7)}{4 - (-2)}$ ✓ -4 (4)
1.2	$\therefore f'(x) = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{\frac{x-(x+h)}{x(x+h)}}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{\frac{x-x-h}{x(x+h)}}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{\frac{-h}{x(x+h)}}{h}$	ÉcoleBooks	$ \frac{\frac{1}{x+h} - \frac{1}{x}}{h} \\ \frac{x-(x+h)}{x(x+h)} \\ \frac{\frac{-h}{x(x+h)}}{h} \\ \frac{-1}{x(x+h)} \\ \frac{-1}{x^2} \\ $ (5)
· I			[17]

MATHEMATICSGRADE 12SESSION 13(TEACHER NOTES)

2.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\checkmark (x+h)^2 - 2(x+h)$	
		$\checkmark -x^2 + 2x$	
	$=\lim_{h \to 0} \frac{(x+h)^2 - 2(x+h) - x^2 + 2x}{h}$	$\checkmark -x^2 + 2x$ $\checkmark \frac{2xh + h^2 - 2h}{h}$	
	$=\lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 2x - 2h - x^2 + 2x}{h}$	$\checkmark (2x-2+h)$ $\checkmark 2x-2$	
	$=\lim \frac{2xh+h^2-2h}{2}$		(5)
	$=\lim_{h\to 0} \frac{h}{h(2x+h-2)}$		
	$\lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} (2x - 2 + h)$		
	-2r-2		
2.2	$g'(x) = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$	$\checkmark (x+h)^3 - x^3$ $\checkmark \checkmark 3x^2h + 3xh^2 + h^3$	
	$\therefore g'(x) = \lim_{h \to 0} \frac{(x+h)(x+h)^2 - x^3}{h}$	$\checkmark (3x^2 + 3xh + h^2)$ $\checkmark 3x^2$	
	$\therefore g'(x) = \lim_{h \to 0} \frac{(x+h)(x^2+2xh+h^2)-x^3}{h}$	✓ 27	(\mathbf{c})
	$\therefore g'(x) = \lim_{h \to 0} \frac{x^3 + 2x^2h + xh^2 + x^2h + 2xh^2 + h^3 - x^3}{h}$		(6)
	$\therefore g'(x) = \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}$		
	$\therefore g'(x) = \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h}$		
	$\therefore g'(x) = \lim_{h \to 0} (3x^2 + 3xh + h^2)$		
	$\therefore g'(x) = 3x^2$		
	$\therefore g'(3) = 3(3)^2 = 27$		
	1	[´	11]

			(
MATHEMATICS	GRADE 12	SESSION 13	(TEACHER NOTES)

TOPIC 2 : CALCULUS – RULES OF DIFFERENTIATION AND TANGENTS

1.1	$D_x \left[(2x-3)(x+4) \right]$	$\checkmark 2x^2 + 5x - 12$	
	$= D_x \left[2x^2 + 5x - 12 \right]$	$\checkmark 4x+5$	(2)
			(2)
1.2	$=4x+5$ $f(x) = \frac{1}{2\sqrt[4]{x^3}}$	$\checkmark \frac{1}{2} x^{-\frac{3}{4}}$	
	$\therefore f(x) = \frac{1}{2x^{\frac{3}{4}}}$	$\checkmark -\frac{3}{8}x^{-\frac{7}{4}}$ $\checkmark -\frac{3}{8x^{\frac{7}{4}}}$	
	$\therefore f(x) = \frac{1}{2}x^{-\frac{3}{4}}$	$8x^{\frac{7}{4}}$	(3)
	$\therefore f'(x) = \frac{1}{2} \times -\frac{3}{4} x^{-\frac{3}{4}-1}$		
	$\therefore f'(x) = -\frac{3}{8}x^{-\frac{7}{4}}$		
	$\therefore f'(x) = -\frac{3}{8x^{\frac{7}{4}}}$ [for the books]		
1.3	$y = \left(2\sqrt{x} - \frac{1}{3x}\right)^2$	✓ squaring ✓ $4x - \frac{4}{3}x^{-\frac{1}{2}} + \frac{1}{9}x^{-2}$	
	$\therefore y = 4x - \frac{4\sqrt{x}}{3x} + \frac{1}{9x^2}$	$\checkmark \checkmark \checkmark 4 + \frac{2}{3x^{\frac{3}{2}}} - \frac{2}{9x^{3}}$	
	$\therefore y = 4x - \frac{4x^{\frac{1}{2}}}{3x} + \frac{1}{9}x^{-2}$		(5)
	$\therefore y = 4x - \frac{4}{3}x^{-\frac{1}{2}} + \frac{1}{9}x^{-2}$		
	$\therefore \frac{dy}{dx} = 4 - \frac{4}{3} \times -\frac{1}{2} x^{-\frac{3}{2}} + \frac{1}{9} \times -2x^{-3}$		
	$\therefore \frac{dy}{dx} = 4 + \frac{2}{3}x^{-\frac{3}{2}} - \frac{2}{9}x^{-3}$		
	$\therefore \frac{dy}{dx} = 4 + \frac{2}{3x^{\frac{3}{2}}} - \frac{2}{9x^{3}}$		

MATHEMATICS	GRADE 12	SESSION 13	(TEACHER NOTES)
=	$D_{x}\left[\frac{1}{\sqrt{x}}\left(x^{3}-2x^{2}+3x\right)\right]$ = $D_{x}\left[\frac{x^{3}}{x^{\frac{1}{2}}}-\frac{2x^{2}}{x^{\frac{1}{2}}}+\frac{3x}{x^{\frac{1}{2}}}\right]$ = $D_{x}\left[x^{\frac{5}{2}}-2x^{\frac{3}{2}}+3x^{\frac{1}{2}}\right]$ = $\frac{5}{2}x^{\frac{3}{2}}-3x^{\frac{1}{2}}+\frac{3}{2}x^{-\frac{1}{2}}$ = $\frac{5}{2}x^{\frac{3}{2}}-3x^{\frac{1}{2}}+\frac{3}{2x^{\frac{1}{2}}}$		$\checkmark x^{\frac{1}{2}}$ $\checkmark D_{x} \left[x^{\frac{5}{2}} - 2x^{\frac{3}{2}} + 3x^{\frac{1}{2}} \right]$ $\checkmark \frac{5}{2} x^{\frac{3}{2}} - 3x^{\frac{1}{2}} + \frac{3}{2} x^{-\frac{1}{2}}$ $\checkmark \frac{5}{2} x^{\frac{3}{2}} - 3x^{\frac{1}{2}} + \frac{3}{2x^{\frac{1}{2}}}$ (4) $[14]$
	$= 2x^2$		[]

		1
2.1	$f(x) = x^2 - 6x + 5$	✓ $f(2) = -2$
	$x_{\rm T} = 2$	$\checkmark f'(x) = 2x - 6$
	$y_{\rm T} = f(2) = (2)^2 - 6(2) + 5$	✓ $f'(2) = 2(2) - 6 = -2$
	$\therefore y_{\rm T} = -3$	✓ $y - (-3) = -2(x - 2)$ ✓ $y = -2x + 1$
	$m_{\rm T} = f'(x) = 2x - 6$ ÉcoleBooks	$y = 2x + 1 \tag{5}$
	$\therefore f'(2) = 2(2) - 6 = -2$	
	$y - y_{\rm T} = m_t (x - x_{\rm T})$	
	$\therefore y - (-3) = -2(x - 2)$	
	$\therefore y+3 = -2x+4$	
	$\therefore y = -2x + 1$	
2.2	$f(x) = 3x^2 - 5x + 1$	$\checkmark f'(x) = 6x - 5$
	$\therefore f'(x) = 6x - 5$	$\checkmark 6x - 5 = 7$ $\checkmark x = 2$
	y = 7x - 4	✓ $f(2) = 3$
	$\therefore 6x - 5 = 7$	$\checkmark y-3=7(x-2)$
	$\therefore 6x = 12$	$\checkmark y = 7x - 11 \tag{6}$
	$\therefore x = 2$	(0)
	$f(2) = 3(2)^2 - 5(2) + 1$	
	$\therefore f(2) = 3$	
	$\therefore y-3=7(x-2)$	
	$\therefore y - 3 = 7x - 14$	
	$\therefore y = 7x - 11$	[11]

MATHEMATICS	GRADE 12	SESSION 13	(TEACHER NOTES)
			. ,

SECTION C: HOMEWORK

TOPIC 1 : CALCULUS – LIMITS AND FIRST PRINCIPLES

QUESTION 1

Ι

1.1 Given: $f(x) = 1 - \frac{1}{4}x^2$

- 1.1.1 Determine f'(x) from first principles.(6)1.1.2 Determine the gradient of the graph at x = -4, i.e. f'(-4)(1)
- 1.1.3 Determine f(-2). What does your answer represent?
- 1.1.4 Determine the average gradient of f between x = -2 and x = 4 (4)
- 1.2 Use first principles to determine the derivative of $f(x) = -\frac{3}{2}$

$$f(x) = -\frac{3}{x} \tag{5}$$

[18]

(2)

QUESTION 2

- 2.1 Differentiate *f* by first principles where f(x) = -2x. (4) 2.2 Determine the gradient of the tangent to the graph of $g(x) = -2x^3$ at x = 2 (6)
- 2.2 Determine the gradient of the tangent to the graph of $g(x) = -2x^3$ at x = 2 (6) [10]

TOPIC 2 : CALCULUS – RULES OF DIFFERENTIATION AND TANGENTS

QUESTION 1

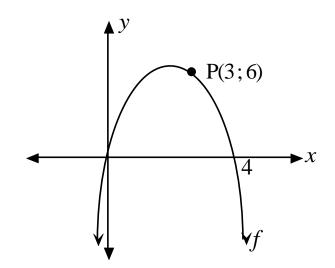
Determine the following and leave your answer with positive exponents:

1.1 f'(x) if $f(x) = (4x-3)^2$ (2)

1.2
$$D_x \left[\sqrt[3]{x} + \frac{1}{\sqrt{x}} \right]$$
 (3)

1.3 $D_x \left[(x^2 - \sqrt{x})^2 \right]$ (5)

1.4
$$\frac{dy}{dx}$$
 if $y = \frac{2x^2 - \sqrt{x} + 5}{\sqrt{x}}$ (4)


QUESTION 2 10 minutes

- 2.1 Determine the equation of the tangent to the curve $y = 3x^2 2x + 2$ at x = -4. (5)
- 2.2 The graph of $f(x) = ax^2 + bx$ passes through the point P(3; 6) and cuts the *x*-axis

[14]

RVENTION PROGRAMME	COLEBO SENIOR SECONDARY INT		DOWNLOAD MORE RE GAUTENG DEPARTMEN
(TEACHER NOTES)	SESSION 13	GRADE 12	MATHEMATICS
(6)	f the tangent to <i>f</i> at P.	ermine the equation of	at (4;0). Dete

MATHEMATICS

Ι

SESSION 13

(TEACHER NOTES)

SECTION D: SOLUTIONS TO HOMEWORK

2. TOPIC 1 : CALCULUS - LIMITS AND FIRST PRINCIPLES

1.1.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\checkmark 1 - \frac{1}{4}(x+h)^2$
	$\therefore f'(x) = \lim_{h \to 0} \frac{1 - \frac{1}{4}(x+h)^2 - \left(1 - \frac{1}{4}x^2\right)}{h}$	✓ $-1 + \frac{1}{4}x^2$ ✓ $-\frac{1}{4}x^2 - \frac{1}{2}xh - \frac{1}{4}h^2$
	$\therefore f'(x) = \lim_{h \to 0} \frac{1 - \frac{1}{4}(x^2 + 2xh + h^2) - 1 + \frac{1}{4}x^2}{h}$	$\checkmark -\frac{1}{2}xh - \frac{1}{4}h^2$
	$\therefore f'(x) = \lim_{h \to 0} \frac{1 - \frac{1}{4}x^2 - \frac{1}{2}xh - \frac{1}{4}h^2 - 1 + \frac{1}{4}x^2}{h}$	$\checkmark \left(-\frac{1}{2}x - \frac{1}{4}h \right)$ $\checkmark -\frac{1}{2}x$
	:. $f'(x) = \lim_{h \to 0} \frac{-\frac{1}{2}xh - \frac{1}{4}h^2}{h}$	(6)
	$\therefore f'(x) = \lim_{h \to 0} \frac{h\left(-\frac{1}{2}x - \frac{1}{4}h\right)}{h}$	
	$\therefore f'(x) = \lim_{h \to 0} \left(-\frac{1}{2}x - \frac{1}{4}h \right)$	
	$\therefore f'(x) = -\frac{1}{2}x$	
1.1.2	$\therefore f'(x) = -\frac{1}{2}x$ $f'(-4) = -\frac{1}{2}(-4) = 2$	✓ answer(1)

MATHEMATICS	GRADE 12	SESSION 13	(TEACHER N	NOTES)
1.1.3 $f(x) = 1 - \frac{1}{4}x$ $\therefore f(-2) = 1 - \frac{1}{4}x$ $\therefore f(-2) = 0$ The answer reference of the function of the f	$\frac{1}{4}(-2)^2$	orresponding to	✓ $f(-2) = 0$ ✓ interpretation	(2)
$x = -2$ 1.1.4 $f(x) = 1 - \frac{1}{4}x$ $f(-2) = 0$ $f(4) = 1 - \frac{1}{4}(4)$			✓ $f(-2) = -7$ ✓ $f(4) = -31$ ✓ $\frac{-31 - (-7)}{4 - (-2)}$ ✓ -4	(4)
	$ient = \frac{-3 - 0}{4 - (-2)} = \frac{-3}{6} = -$	$\frac{1}{2}$		(')
$\therefore f'(x) = \lim_{h \to 0}$ $\therefore f'(x) = \lim_{h \to 0}$	$\frac{-\frac{3}{x+h} - \left(-\frac{3}{x}\right)}{\frac{h}{-\frac{3}{x+h} + \frac{3}{x}}}$	coleBooks	$\checkmark -\frac{3}{x+h} - \left(-\frac{3}{x}\right)$ $\checkmark -\frac{3}{x+h} + \frac{3}{x}$	
$\therefore f'(x) = \lim_{h \to 0}$ $\therefore f'(x) = \lim_{h \to 0}$	$\frac{\frac{-5x+5(x+h)}{x(x+h)}}{\frac{-5x+5(x+h)}{x(x+h)}}$		$\checkmark \frac{\frac{3h}{x(x+h)}}{h}$ $\checkmark \frac{3}{x(x+h)}$	
$\therefore f'(x) = \lim_{h \to 0}$ $\therefore f'(x) = \lim_{h \to 0}$	h		$\checkmark \frac{3}{x^2}$	(5)
$\therefore f'(x) = \lim_{h \to 0}$ $\therefore f'(x) = \frac{1}{x(x)}$ $\therefore f'(x) = \frac{3}{x^2}$	x(x+h)			
x^2				[18]

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM age 108 of 123

MATHEMATICSGRADE 12SESSION 13(TEACHER NOTES)

QUESTION 2

Ι

2.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\checkmark -2(x+h) - (-2x)$
		$\checkmark -x^2 + 2x$
	$= \lim_{h \to 0} \frac{-2(x+h) - (-2x)}{h}$	$\begin{array}{l} \checkmark -x^2 + 2x \\ \checkmark \frac{-2h}{h} \end{array}$
		h $\checkmark -2$
	$=\lim_{h\to 0}\frac{-2x-2h+2x}{h}$	(4)
	$=\lim_{h\to 0}\frac{-2h}{h}$	
	$= \lim(-2)$	
	$h \rightarrow 0$ = -2	
2.2		$\checkmark -2(x+h)^3 - (-2x^3)$
	$g'(x) = \lim_{h \to 0} \frac{-2(x+h)^3 - (-2x^3)}{h}$	$\checkmark \checkmark -6x^2h - 6xh^2 - 2h^3$
	$\therefore g'(x) = \lim_{h \to 0} \frac{-2(x+h)(x+h)^2 + 2x^3}{h}$	$\checkmark \checkmark (-6x^2 - 6xh - 2h)$
	$\therefore g'(x) = \lim_{h \to 0} \frac{1}{h}$	$\checkmark -6x^2$
	$\therefore g'(x) = \lim_{h \to 0} \frac{-2(x+h)(x^2 + 2xh + h^2) + 2x^3}{h}$	(6)
	$\therefore g(x) = \lim_{h \to 0} \frac{1}{h}$	
	$\therefore g'(x) = \lim_{h \to 0} \frac{-2(x^3 + 2x^2h + xh^2 + x^2h + 2xh^2 + h^3) + 2x^3}{h}$	
	$\therefore g'(x) = \lim_{h \to 0} \frac{-2(x^3 + 3x^2h + 3xh^2 + h^3) + 2x^3}{h}$	
	$\therefore g'(x) = \lim_{h \to 0} \frac{-2x^3 - 6x^2h - 6xh^2 - 2h^3 + 2x^3}{h}$	
	$\therefore g'(x) = \lim_{h \to 0} \frac{-6x^2h - 6xh^2 - 2h^3}{h}$	
	$\therefore g'(x) = \lim \frac{h(-6x^2 - 6xh - 2h)}{h(-6x^2 - 6xh - 2h)}$	
	$\therefore g'(x) = \lim_{h \to 0} (-6x^2 - 6xh - 2h)$	
	$\therefore g'(x) = -6x^2$	
	$\therefore g'(x) = -6x^2$ $\therefore g'(2) = -6(2)^2 = -24$	
		[10]
		[10]

MATHEMATICS GRADE 12 SESSION 13 (TEACHER NOTES)

TOPIC 2 : CALCULUS – RULES OF DIFFERENTIATION AND TANGENTS

QUESTION 1

1.1	$f(x) = (4x - 3)^2$	✓ $16x^2 - 24x + 9$	
	$\therefore f(x) = 16x^2 - 24x + 9$	$\checkmark 32x - 24$	(2)
	$\therefore f'(x) = 16 \times 2x^{2-1} - 24 + 0$		(2)
	$\therefore f'(x) = 32x - 24$		
1.2	$D_x \left[\sqrt[3]{x} + \frac{1}{\sqrt{x}} \right]$	$\checkmark x^{\frac{1}{3}} + x^{-\frac{1}{2}}$ $(1 - \frac{2}{3} - 1 - \frac{3}{3})$	
	$= \mathbf{D}_{x} \left[x^{\frac{1}{3}} + x^{-\frac{1}{2}} \right]$	$\checkmark \frac{1}{3} x^{-\frac{2}{3}} - \frac{1}{2} x^{-\frac{3}{2}}$	
	$=\frac{1}{3}x^{-\frac{2}{3}}-\frac{1}{2}x^{-\frac{3}{2}}$	$\checkmark \frac{1}{3x^{\frac{2}{3}}} - \frac{1}{2x^{\frac{3}{2}}}$	(3)
	$=\frac{1}{3x^{\frac{2}{3}}}-\frac{1}{2x^{\frac{3}{2}}}$		
1.3	$\frac{D_x \left[(x^2 - \sqrt{x})^2 \right]}{\left[D_x \left[(x^2 - \sqrt{x})^2 \right] \right]}$	$\checkmark \checkmark x^4 - 2x^{\frac{5}{2}} + x$	
	$= D_x \left[x^4 - 2x^2 \sqrt{x} + x \right]$	$\checkmark \checkmark \checkmark 4x^3 - 5x^{\frac{3}{2}} + 1$	(5)
	$= \mathbf{D}_x \left[x^4 - 2x^2 x^{\frac{1}{2}} + x \right]$		(0)
	$= \mathbf{D}_x \left[x^4 - 2x^{\frac{5}{2}} + x \right]$		
	$=4x^3 - 5x^{\frac{3}{2}} + 1$		
1.4	$= 4x^{3} - 5x^{\frac{3}{2}} + 1$ $y = \frac{2x^{2} - \sqrt{x} + 5}{\sqrt{x}}$	$\checkmark x^{\frac{1}{2}}$ $\checkmark 2x^{\frac{3}{2}} - 1 + 5x^{-\frac{1}{2}}$	
	$\therefore y = \frac{2x^2}{x^{\frac{1}{2}}} - 1 + \frac{5}{x^{\frac{1}{2}}}$	✓ $2x^{2} - 1 + 5x^{-1}$ ✓ $3x^{\frac{1}{2}} - \frac{5}{2}x^{-\frac{3}{2}}$ ✓ $3x^{\frac{1}{2}} - \frac{5}{2x^{\frac{3}{2}}}$	
	$\therefore y = 2x^{\frac{3}{2}} - 1 + 5x^{-\frac{1}{2}}$	$\checkmark 3x^{\frac{1}{2}} - \frac{5}{2x^{\frac{3}{2}}}$	
	$\therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2}x^{-\frac{3}{2}}$		(4)
	$\therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2x^{\frac{3}{2}}}$		
	·	•	[14]

download more resources like this on **ECOLEBOOKS.COM**age 110 of 123

MATHEMATICS GRADE 12 SESSION 13 (TEACHER NOTES)

QUESTION 2

Ι

	Τ	
2.1	$y = f(x) = 3x^2 - 2x + 2$	$\checkmark f(-4) = 58$
	$x_{\rm T} = -4$	$\checkmark f'(x) = 6x - 2$
	$\therefore f(-4) = 3(-4)^2 - 2(-4) + 2$	✓ $f'(5) = -26$
	$\therefore f(-4) = 58$	✓ $y-58 = -26(x-(-4))$ ✓ $y = -26x-46$
	$\therefore y_{\rm T} = 58$	(5) $y = 20x + 0$
	$m_{\rm T} = f'(x) = 6x - 2$	
	f'(-4) = 6(-4) - 2	
	$\therefore f'(5) = -26$	
	$y - y_{\rm T} = m_t (x - x_{\rm T})$	
	$\therefore y - 58 = -26(x - (-4))$	
	$\therefore y - 58 = -26x - 104$	
	$\therefore y = -26x - 46$	
2.2	y = a(x-0)(x-4)	$\checkmark y = a(x-0)(x-4)$
	Substitute the point (3;6)	$\checkmark a = -2$
	$\therefore 6 = a(3-0)(3-4)$	$\checkmark f(x) = -2x^2 + 8x$
	$\therefore 6 = -3a$	$\checkmark f'(x) = -4x + 8$
	$\therefore a = -2$	✓ $f'(3) = -4(3) + 8 = -4$ ✓ $y = -4x + 18$
	$\therefore y = -2(x-0)(x-4)$	(6) $y = -4x + 18$
	$\therefore y = -2x(x-4)$	
	$\therefore y = -2x^2 + 8x$	
	$f(x) = -2x^2 + 8x$	
	$\therefore f'(x) = -4x + 8$	
	$\therefore f'(3) = -4(3) + 8 = -4$	
	$y - y_{\rm T} = m_t (x - x_{\rm T})$	
	$\therefore y - 6 = -4(x - 3)$	
	$\therefore y - 6 = -4x + 12$	
	$\therefore y = -4x + 18$	
L		[11]

MATHEMATICS GRADE 12 SESSION 14

(TEACHER NOTES)

[17]

TOPIC 1 : CALCULUS – GRAPHICAL APPLICATIONS

Teacher Note: TOPIC 1: Cubic graphs are easy to sketch and are worth a lot of marks in the matric exam. Make sure the learners learn how to sketch these graphs.

TOPIC 2: Linear Programming requires learners to be able to translate from words into maths, which is quite a challenge. However, if the words "at least", "at most", "may not exceed" and "must not be more than" are fully explained and understood, then this topic can be well answered. Revise the linear function in detail before approaching this topic.

LESSON OVERVIEW FOR EACH TOPIC

- Introduction session: 10 minutes
 Typical exam questions:
- Question 1: 10 minutes Question 2: 10 minutes
- 3. Discussion of solutions: 15 minutes

SECTION A: TYPICAL EXAM QUESTIONS

TOPIC 1 : CALCULUS – GRAPHICAL APPLICATIONS

QUESTION 1: 10 minutes

Sketch the graph of $f(x) = 2x^3 - 6x - 4x^3$

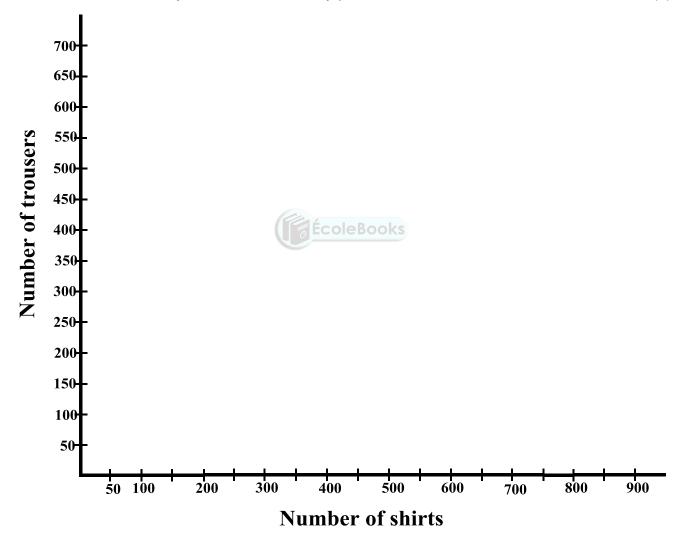
QUESTION 2: 10 minutes

(2;9) is a turning point on the graph of $f(x) = ax^3 + 5x^2 + 4x + b$. Determine the value of *a* and *b* and hence the equation of the cubic function. [7]

3. TOPIC 2: LINEAR PROGRAMMING

QUESTION 1: 20 minutes

A clothing company manufactures white shirts and grey trousers for schools.


- A minimum of 200 shirts must be manufactured daily.
- In total, not more than 600 pieces of clothing can be manufactured daily.
- It takes 50 machine minutes to manufacture a shirt and 100 machine minutes to manufacture a pair of trousers.
- There are at most 45 000 machine minutes available per day.

MATHEMATICS GRADE 12 SESSION 14 (TEACHER NOTES)

Let the number of white shirts manufactured in a day be x. Let the number of pairs of grey trousers manufactured in a day be y.

- 1.1 Write down the constraints, in terms of *x* and *y*, to represent the above information. (You may assume: $x \ge 0$, $y \ge 0$) (3)
- 1.2 Use the diagram provided on the next page to represent the constraints graphically.
- 1.3 Clearly indicate the feasible region by shading it.
- 1.4 If the profit is R30 for a shirt and R40 for a pair of trousers, write down the equation indicating the profit in terms of x and y. (2)
- 1.5 Using a search line and your graph, determine the number of shirts and pairs of trousers that will yield a maximum daily profit. (3)

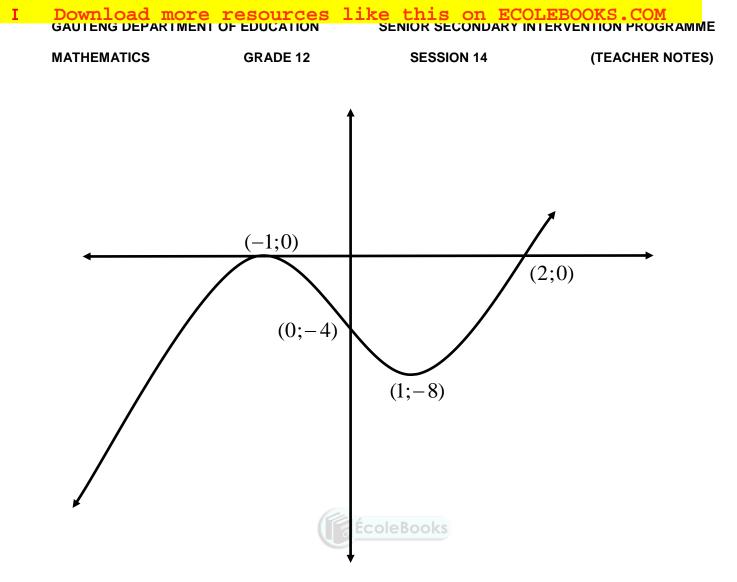
[14]

(5)

(1)

MATHEMATICS

SESSION 14


(TEACHER NOTES)

SECTION B: SOLUTIONS AND HINTS TO SECTION A

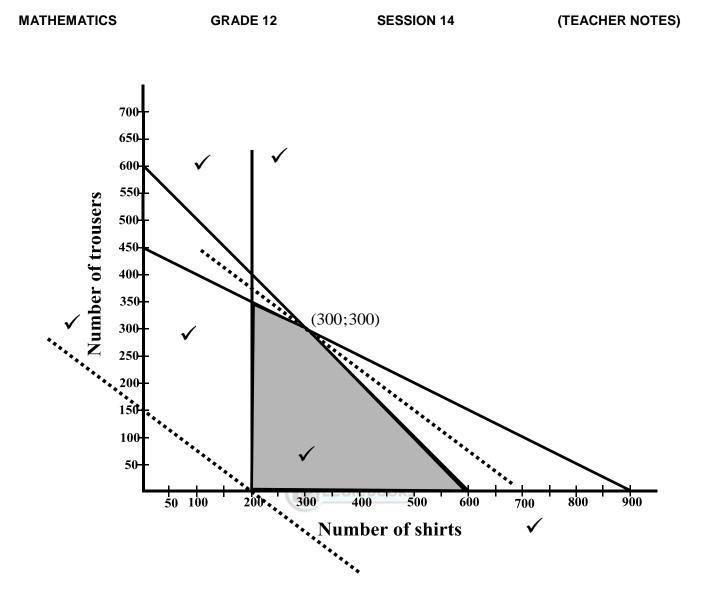
TOPIC 1 : CALCULUS – GRAPHICAL APPLICATIONS

y-intercept: $(0;-4)$	✓ (0;-4)
<i>x</i> -intercepts:	$\checkmark 0 = 2x^3 - 6x - 4$
$0 = 2x^3 - 6x - 4$	$\checkmark 0 = (x+1)(x^2 - x - 2)$
$\therefore 0 = x^3 - 3x - 2$	✓ $0 = (x+1)(x-2)(x+1)$
$\therefore 0 = (x+1)(x^2 - x - 2)$ (using the factor theorem)	✓ (-1;0) (2;0)
$\therefore 0 = (x+1)(x-2)(x+1)$	
$\therefore x = -1$ or $x = 2$	
(-1;0) (2;0)	
Stationary points:	
$f(x) = 2x^3 - 6x - 4$	$\checkmark f'(x) = 6x^2 - 6$
$\therefore f'(x) = 6x^2 - 6$	$\checkmark 0 = 6x^2 - 6$
$\therefore 0 = 6x^2 - 6$ (At a turning point, $f'(x) = 0$)	✓ $x = \pm 1$ ✓ (1;-8) and (-1;0)
$\therefore 0 = x^2 - 1$	(1, 0) und (1,0)
$\therefore x = \pm 1$	
f(1) = -8	
f(-1) = 0	
Turning points are $(1; -8)$ and $(-1; 0)$	
Point of inflection:	$\checkmark f''(x) = 12x$
$f'(x) = 6x^2 - 6$	✓ (0;-4)
$\therefore f''(x) = 12x$	
$\therefore 0 = 12x$	
$\therefore x = 0$	
f(0) = -4	
Point of inflection at $(0; -4)$	
Alternatively:	(1) + (-1)
The x-coordinate of the point of inflection can b determined by adding the x-coordinates of the turnin	
points and then dividing the result by 2.	$\mathbf{y} \neq x = 0$
$x = \frac{(1) + (-1)}{2} = 0$	

The graph is represented above	 ✓ intercepts with the axes ✓ turning points ✓ shape ✓ point of inflection
	[17]

At the turning point (2;9), we know that	$\checkmark f'(x) = 3ax^2 + 10x + 4$
f'(2) = 0	✓ $f'(2) = 12a + 24$
$f(x) = ax^3 + 5x^2 + 4x + b$	$\checkmark a = -2$
$\therefore f'(x) = 3ax^2 + 10x + 4$	$\checkmark y = -2x^3 + 5x^2 + 4x + b$
∴ $f'(2) = 3a(2)^2 + 10(2) + 4$	✓ 9 = $-2(2)^3 + 5(2)^2 + 4(2) + b$
$(1) \int (2) - 3a(2) + 10(2) + 4$	$\checkmark b = -3$
	$\checkmark f(x) = -x^3 + 5x^2 + 4x - 3$
	[7]

MATHEMATICS	GRADE 12	SESSION 14	(TEACHER NOTES)
$\therefore f'(2) = 1$	2a + 24		
$\therefore 0 = 12a$	- 24		
$\therefore -12a = 2$	24		
equation: $y = -2x^3 + 1$ In order to (2;9) into $\therefore 9 = -2(2)$ $\therefore 9 = -16 + 2$ $\therefore -b = 3$ $\therefore b = -3$ The equation		tute the point	


TOPIC 2 : LINEAR PROGRAMMING

QUESTION 1

1.1	$x \ge 200$	\checkmark $x \ge 200$
	$x + y \le 600$	$\checkmark x+y \le 600$
	•	✓ $50x + 100y \le 45000$
	$50x + 100y \le 45000$	(3)
1.2	See diagram	See diagram for mark allocation
		(5)
1.3	See diagram	See diagram for mark allocation
		(1)

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM Page 116 of 123

1.4	$\mathbf{P} = 30x + 40y$	$\checkmark 30x$ $\checkmark 40y$
		(2)
1.5	30x + 40y = P $\therefore 40y = -30x + P$ $\therefore y = -\frac{3}{4}x + \frac{P}{40}$ 3 cuts on <i>y</i> -axis 4 cuts on <i>x</i> -axis Maximum at (300;300)	✓ $y = -\frac{3}{4}x + \frac{P}{40}$ ✓ search line ✓ (300;300) (3)
<u> </u>		[14]

Ι

MATHEMATICS GRADE 12 SESSION 14 (TEACHER NOTES)

SECTION C: HOMEWORK

TOPIC 1 : CALCULUS – GRAPHICAL APPLICATIONS

QUESTION 1

Sketch the graph of $f(x) = x^3 - 3x^2 + 4$

Indicate the coordinates of the stationary points, intercepts with the axes and any points of inflection. [15]

QUESTION 2

(DoE Feb. 2009 Paper 1)

x

[17]

n

The graph of $h(x) = -x^3 + ax^2 + bx$ is shown below. A(-1; -3,5) and B(2;10) are the turning points of *h*. The graph passes through the origin and further cuts the *x*-axis at C and D.

B(2;10)

0

A(-1; -3,5)

- 2.2 Calculate the average gradient between A and B. (2)
- 2.3 Determine the equation of the tangent to *h* at x = -2. (5)
- 2.4 Determine the x-value of the point of inflection of h. (3)

MATHEMATICS GRADE 12 SESSION 14 (TEACHER NOTES)

TOPIC 2 : LINEAR PROGRAMMING

QUESTION 1

A chemical solution is made by mixing two chemicals, P and Q into a solution called S. The solution S requires at least 900kg but not more than 1400kg of the chemicals. The solution must contain at least 2kg of P to every kg of Q. Write down the constraints and then sketch the feasible region. Find the mixture that will be the most cost effective if P costs R5 per kg and Q costs R3 per kg. [13]

QUESTION 2

In order to paint the walls of his home, Joseph will require at least 10 litres of purple paint. Purple paint is obtained by mixing quantities of red and blue paint. To obtain a suitable shade of purple paint, the volume of blue paint used must be at least half the volume of red paint used. The hardware store where Joseph intends buying the paint, has only 8 litres of blue paint in stock. Let the number of litres of red paint be x and the number of litres of blue paint be y.

- 2.1 Write down the inequalities in terms of *x* and *y* which represent the constraints of this situation.
- 2.2 On the attached diagram provided, represent the constraints graphically and clearly indicate the feasible region.
- 2.3 The cost of both red and blue paint is R40 per litre, but the paint is only sold in 2-litre tins. Determine the number of litres of red and blue paint which can be bought maintaining a minimum cost. Show all possible combinations.

(5) [12]

(3)

(4)

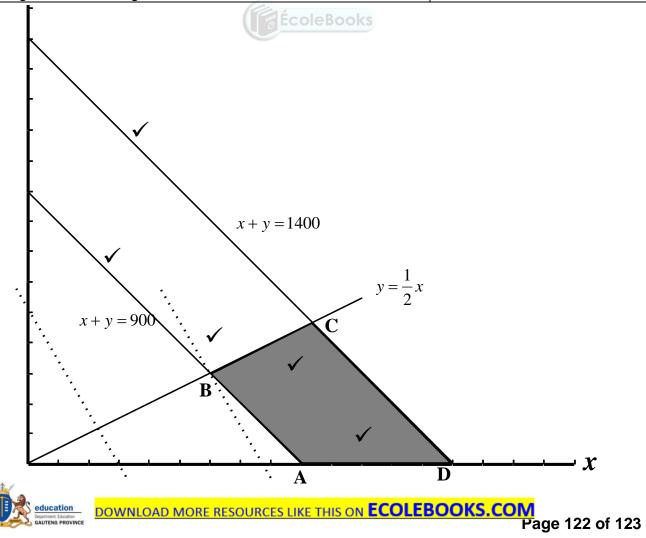
SECTION D: SOLUTIONS TO HOMEWORK

4. TOPIC 1 : CALCULUS – GRAPHICAL APPLICATIONS

x-interc	cepts:	y-intercept:	4	$\checkmark 0 = x^3 - 3x^2 + 4$
$0 = x^3$	$-3x^2 + 4$			✓ $(x+1)(x^2-4x+4) = 0$
$\therefore (x+1)$	$(x^2 - 4x + 4) = 0$			$\checkmark x = -1$ or $x = 2$
$\therefore (x+1)$	(x-2)(x-2) = 0			
$\therefore x = -$	-1 or $x = 2$			
f'(x) =	$=3x^2-6x$			$\checkmark f'(x) = 3x^2 - 6x$
$\therefore 0 = 3$	$x^2 - 6x$			✓ $0 = 3x^2 - 6x$
$\therefore 0 = x$	x^2-2x			$\checkmark x = 0$ or $x = 2$
$\therefore 0 = x$	(x-2)			
$\therefore x = 0$	or $x = 2$			
1				

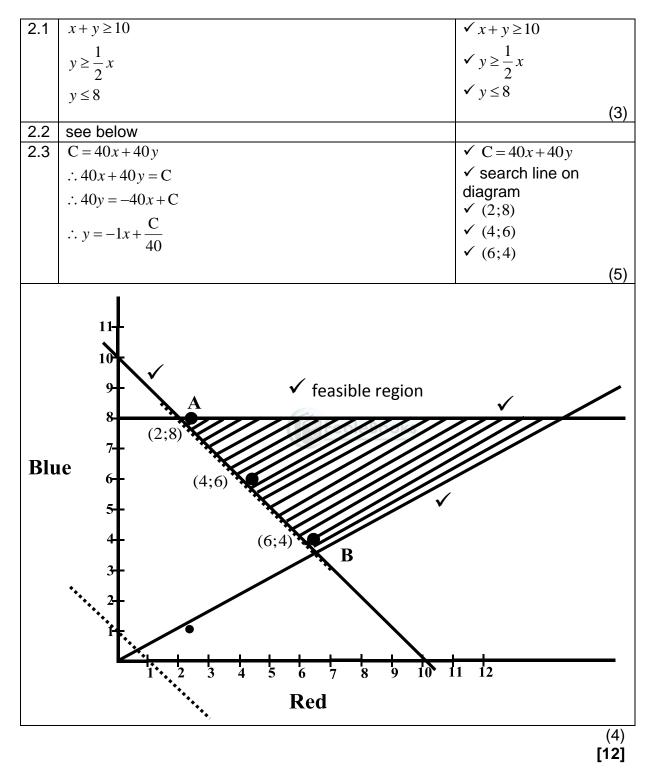
MATHEMATICS	GRADE 12	SESSION 14	(TEACHER NO	OTES)
	$= 0 f(0) = (0)^3 - 3(0)^2 $		 ✓ (0;4) ✓ (2;0) 	
Min tu f'(x) = $\therefore f''(x) =$ $\therefore 0 = 0$ $\therefore -6x$ $\therefore x = 1$ f(1) = f(1) =	rning point at (2;0) = $3x^2 - 6x$ x) = $6x - 6$ 6x - 6 = -6 1 $(1)^3 - 3(1)^2 + 4$ 2		$\checkmark f''(x) = 6x - 6$ $\checkmark x = 1$ $\checkmark (1; 2)$	
	(0;4) (0;4) (-1;0)	e;0) Books x	 ✓ intercepts with the axes ✓ turning points ✓ shape ✓ point of inflection 	(15)

2.1	$h'(x) = -3x^2 + 2ax + b$	$\checkmark h'(x) = -3x^2 + 2ax + b$
	$h'(-1) = -3(-1)^2 + 2a(-1) + b$	✓ $h'(-1) = -3(-1)^2 + 2a(-1) + b$
	0 = -3 - 2a + b	✓ $2a-b=-3$ ✓ $h'(2) = -3(2)^2 + 2a(2) + b$
	2a - b = -3 (i)	✓ $a(2) = 3(2) + 2a(2) + b$ ✓ $4a + b = 12$
	$h'(2) = -3(2)^2 + 2a(2) + b$	$\checkmark a = \frac{3}{2}$
	0 = -12 + 4a + b	$2 \neq b=6$
	4a + b = 12 (ii)	(7)


				HER NOTES)
	$6a = 9 \qquad (i) + (ii)$ $\therefore a = \frac{3}{2}$ $\therefore 2\left(\frac{3}{2}\right) - b = -3$ b = 6			
	Average gradient $=\frac{10 - (-3,5)}{2 - (-1)}$ $=\frac{13,5}{3}$ $=\frac{9}{2}$		✓ $\frac{10 - (-3, 5)}{2 - (-1)}$ ✓ $\frac{9}{2}$	(2)
	$h(x) = -x^{3} + \frac{3}{2}x^{2} + 6x$ $\therefore h'(x) = -3x^{2} + 3x + 6x^{2}$ $h'(-2) = -3(-2)^{2} + 3(-2)^{2} + 3(-2)^{2}$ h'(-2) = -12 Point of contact (-2; 2) y - 2 = -12(x + 2) y = -12x - 22	2)+6 ÉcoleBooks	✓ $h(x) = -x^3 + \frac{3}{2}$ ✓ $h'(x) = -3x^2 + \frac{3}{2}$ ✓ $h'(-2) = -12$ ✓ $y = -12x - 22$ ✓ $h'(-2) = -12$	
2.4	$h'(x) = -3x^{2} + 3x + 6$ h''(x) = -6x + 3 -6x + 3 = 0 $x = \frac{1}{2}$		$\checkmark h''(x) = -6x + 3$ $\checkmark -6x + 3 = 0$ $\checkmark x = \frac{1}{2}$	(3)

MATHEMATICS	GRADE 12	SESSION 14	(TEACHER NOTES)

TOPIC 2 : LINEAR PROGRAMMING


Let $x =$ chemical P and $y =$ chemical Q	✓ $x + y \ge 900$
$x + y \ge 900$	✓ $x + y \le 1400$
$x + y \le 1400$	$\checkmark x \ge 2y$
$x \ge 2y$	$\sqrt{y} \leq \frac{1}{r}$
$\therefore -2y \ge -x$	$y = \frac{1}{2}x$
_ 1	\checkmark C=5x+3y
$\therefore y \le \frac{1}{2}x$	$\checkmark y \le \frac{1}{2}x$ $\checkmark y \le \frac{1}{2}x$ $\checkmark C = 5x + 3y$ $\checkmark y = -\frac{5}{3}x + \frac{C}{3}$
The objective function is $C = 5x + 3y$	
\therefore 5x+3y=C	 ✓ 600kg of P ✓ 300kg of Q
$\therefore 3y = -5x + C$	
$\therefore y = -\frac{5}{3}x + \frac{C}{3}$	See graph for other marks
5 5	
Cut on <i>y</i> -axis is 5 Cut on <i>x</i> -axis is 3	[13]
The most cost effective mixture is the point at which the cost	
is a minimum. The minimum cost is at point $B(600; 300)$.	
Therefore, the most cost effective mixture is:	
600kg of P and 300kg of Q.	

MATHEMATICS	GRADE 12	SESSION 14	(TEACHER NOTES)
			(

QUESTION 2

Ι

Page 123 of 123