SENIOR SECONDARY IMPROVEMENT PROGRAMME 2013

GRADE 12

MATHEMATICS

LEARNER HOMEWORK SOLUTIONS

The SSIP is supported by

TABLE OF CONTENTS

LEARNER HOMEWORK SOLUTIONS

SESSION	TOPIC	PAGE
16	Data Handling	3 - 7
	Transformations	8 – 9
17	Functions	10 – 11
17	Calculus	12 – 13
18	Linear Programming	14 - 15
10	Trigonometry	16 - 19
19	2D Trigonometry	20
	3D Trigonometry ÉcoleBooks	21 - 22

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

MATHEMATICS	GRADE 12	SESSION 16	(LEARNER HOMEWORK SOLUTIONS)

SOLUTIONS TO HOMEWORK: SESSION

16.1 TOPIC: DATA HANDLING

QUESTION 1

(a)

Class intervals (ages)	Frequency ✓	Cumulative frequency ✓
$16 \le x < 20$	0	0
$20 \le x < 24$	5	5
$24 \le x < 28$	10	15
$28 \le x < 32$	5	20
$32 \le x < 36$	3	23

(b)

Graph points Frequency Cumulative **Class** intervals (ages) frequency 0 (20; 0) $16 \le x < 20$ 0 5 5 $20 \le x < 24$ (24;5) $24 \le x < 28$ 10 15 (28;15) 20 $28 \le x < 32$ 5 (32;20) $32 \le x < 36$ 3 23 (36;23)

(6)

(2)

MATHEMATICS	GRADE 12	SESSIO 16	(LEARNER HOMEWORK SOLUTIONS)

(c)	
Lower quartile	\checkmark
$23 \times \frac{1}{4} = 5,75$	
Therefore $Q_1 = 24$	
Median	
$23 \times \frac{1}{2} = 11.5$	*
Therefore Median = 26	
Upper quartile	
$23 \times \frac{3}{4} = 17.25$	✓ (3)
Therefore $Q_3 = 30$	

[11]

QUESTION 2

(a)		(ÉcoleBook	s		
Class intervals	Frequency (f)	Midpoint (<i>m</i>)	$f \times m \checkmark$	$m - \overline{x} \checkmark$	$(m-\overline{x})^2 \checkmark$	$f \times (m - \overline{x})^2 \checkmark$
$20 \le x < 24$	5	22	110	-5	25	125
$24 \le x < 28$	10	26	260	-1	1	10
$28 \le x < 32$	5	30	150	3	9	45
$32 \le x < 36$	3	34	102	7	49	147
			$\overline{x} = \frac{622}{23} = 27 \checkmark$			$\sum_{x \to 0} f \times (m - \overline{x})^2$ $= 327$

(5)

(b)	$\checkmark\checkmark$
SD = $\sqrt{\frac{\sum f \cdot (x - \overline{x})^2}{23}} = \sqrt{\frac{327}{23}} = 3,8$	(2)

- $(\overline{x}-2s;\overline{x}+2s)$
- $=(8850 2 \times 2950; 8850 + 2 \times 2950)$
- =(2950;14750)

MATHEMATICS GRADE 12 SESSION 16 (LEARNER HOMEWORK SOLUTIONS)

Three standard deviation intervals:

 $(\overline{x}-3s;\overline{x}+3s)$

 $=(8850-3\times2950;8850+3\times2950)$

=(0;17700)

2%	$\checkmark \checkmark$	(2)
16%	\checkmark	(1)
No, since there are some employees (less than 2%) earn below R3000,00. These employees will not live an acceptable lifestyle economically. OR Yes, there is a fair distribution of salaries since the majority of the employees,i.e. 68% earn a salary between R5 900 and R11 800 per month. Some employees will have more responsibilities or work longer hours and thus must be compensated accordingly.		(1)
Less than 2% earn below R3000,00.		[4]

a.

MATHEMATICS GRADE 12 SESSION 16 (LEARNER HOMEWORK SOLUTIONS)

(b)	Quadratic	\checkmark	(1)
(c)	Based on the quadratic trend the best fuel consumption occurs when the car is driven at 110 km/h. To keep its fuel bill to a minimum, drivers should drive at 110km/h	$\checkmark\checkmark$	(2)
			[6]

MATHEMATICS GRADE 12 SESSION 16 (LEARNER HOMEWORK SOLUTIONS)

SOLUTIONS TO HOMEWORK: SESSION 16.2 TOPIC : TRANSFORMATIONS

QUESTION 1

a) OP=OX

$$(2-0)^{2} + (4-0)^{2} = (-3\sqrt{2}-0)^{2} + (y)^{2}$$

$$20=18 + y^{2}$$

$$\therefore y^{2} = 2$$

$$\therefore y=\pm\sqrt{2} \text{ but } y<0 \qquad \therefore y=-\sqrt{2}$$

$$X(-3\sqrt{2}; -\sqrt{2})$$

b) $x' = x_A \cos\theta - y_A \sin\theta$ and $y' = y_A \cos\theta + x_A \sin\theta$ $-3\sqrt{2} = 2\cos\theta - 4\sin\theta$ (1) $-\sqrt{2} = 4\cos\theta + 2\sin\theta$ (2)

Multiply equation (1) by -2 and then add the equations

$$6\sqrt{2} = -4\cos\theta + 8\sin\theta$$

$$-\sqrt{2} = 4\cos\theta + 2\sin\theta$$

$$5\sqrt{2} = 10\sin\theta$$

$$\sin\theta = \frac{\sqrt{2}}{2}$$

$$\therefore \theta = 45^{\circ} \text{ but since } \theta \text{ is obtuse } \theta = 135^{\circ}$$

QUESTION 2

2.1

$$(4)^2 + (3)^2 =$$

$$\therefore r^2 = 25$$

$$\therefore r = 5$$

 r^2

MATHEMATICS	GRADE 12	SESSION 16	(LEARNER HOMEWORK SOLUTIONS)

2.2

$$4\cos\theta - 3\sin\theta = \frac{4\sqrt{3} - 3}{2} \dots A$$

$$3\cos\theta + 4\sin\theta = \frac{3\sqrt{3} + 4}{2} \dots B$$

$$16\cos\theta - 12\sin\theta = 2(4\sqrt{3} - 3) \dots A \times 4$$

$$9\cos\theta + 12\sin\theta = \frac{3(3\sqrt{3} + 4)}{2} \dots B \times 3$$

$$\therefore 25\cos\theta = 2(4\sqrt{3} - 3) + \frac{3(3\sqrt{3} + 4)}{2}$$

$$\therefore 25\cos\theta = \frac{25\sqrt{3}}{2}$$

$$\therefore \cos\theta = \frac{\sqrt{3}}{2}$$

$$\therefore \theta = 30^{\circ}$$

2.3

$$AB^{2} = (5)^{2} + (5)^{2} - 2(5)(5) \cos 30^{\circ}$$

$$\therefore AB^{2} = 50 - 50 \left(\frac{\sqrt{3}}{2}\right)$$

$$\therefore AB^{2} = 50 - 25\sqrt{3}$$

$$\therefore AB^{2} = 25(2 - \sqrt{3})$$

$$\therefore AB = 5\sqrt{2 - \sqrt{3}}$$

2.4

Area $\triangle OAB = \frac{1}{2}(5)(5) \sin 30^{\circ}$ \therefore Area $\triangle OAB = \frac{25}{4}$ units²

QUESTION 3

- 3.1 X(-6; 0) Y(3, 6) and Z(6; -6)
- 3.2 Here you will use Analytical geometry to help work out the angles of inclination

 Mxy = $\frac{2}{3}$ and
 MYZ = -4

 Tan θ = $\frac{2}{3}$ tan β = -4

 Θ = 33.69....
 β = 104.03....
 α = 75.96...

MATHEMATICS GRADE 12 SESSION 17 (LEARNER HOMEWORK SOLUTIONS)

SOLUTIONS TO HOMEWORK: SESSION 17.1 TOPIC : FUNCTIONS

QUESTION 1

$$f(x) = 2x$$

$$f(\frac{1}{x}) = 2(\frac{1}{x})$$

$$\frac{1}{f(x)} = \frac{1}{2x}$$

$$f^{-1}(x) = \frac{1}{2}x \quad y=2x \text{ swop } x \text{ and } y \text{ to find inverse: } x = 2y \text{ so } y = \frac{1}{2}x$$

$$f(x) + f(\frac{1}{x}) + \frac{1}{f(x)} + f^{-1}(x) = 2x + \frac{2}{x} + \frac{1}{2}x + \frac{1}{2}x$$

$$= \frac{5x^2 + 5}{2x}$$
[6]
QUESTION 2

QUESTION 3

3.1

$$f(x) = 1 \quad f(x) = 1 \quad f(x$$

Down GAUTI	load mo	THENT OF EDUCAT	<mark>es like this</mark> ON SENIOR SEC	ONDARY INTERVENTION PRO	COM OGRAMME
MATH	EMATICS	GRADE 12	SESSION 17	(LEARNER HOMEWORK SO	LUTIONS)
3.1.1	Range: ⁾	$v \in \left[-4;\infty\right)$			(2) [8]
QUES	STION 4				
4.1	x				
	$y = a^{n}$ $\therefore \frac{1}{n} = a^{2}$				
	4				
12	$a = \frac{1}{2}$				(2)
4.2	$y = \left(\frac{1}{2}\right)^x$				
	$\therefore x = \left(\frac{1}{2}\right)$) ^y			
	$\therefore y = \log x$	$\frac{1}{2}x$			(2)
4.3		2			(2)
	$y = \left(\frac{1}{2}\right)^x$				(1)
4.4	$y = 4x^2$		ÉcoleBooks		
	$\therefore x = 4y^2$	2			
	$\therefore \frac{x}{4} = y^2$				
	$\therefore y = \pm $	$\frac{x}{4}$			(2)
4.5	x > 0 or x	x < 0			(2) [9]
QUES	STION 5				
5.1	$g(-\frac{1}{2}) = -1$ $\log_a \frac{1}{2} = -$	1			
	$\therefore a^{-1} = \frac{1}{2}$				
F 0	$\therefore a = 2$		anda af a 's a l' l	m for 0 m of h 1 l l l l	(2)
5.2	x> 0 and not the do	x≠ 1 (NB: The gra main)	apn of g is only drav	vn tor U <x<1 but="" is<="" td="" this=""><td>(2)</td></x<1>	(2)

5.3 $g^{-1}(x) = 2^{x}$ $x \in \mathbb{R}, x \neq 0$ (NB: From the log graph $x \neq 1$ so its' inverse will have $y \neq 1$ the value that will make y=1 in $g^{-1}(x)$ is x=0 so it must be excluded from the domain.) (2)

[6]

MATHEMATICS	GRADE 12	SESSION 17	(LEARNER HOMEWORK SOLUTIONS)

SOLUTIONS TO HOMEWORK: SESSION 17.2 TOPIC: CALCULUS

QUESTION 1

$1 - 2n + 2n + \frac{1}{2} \times 2n$	
	(0)
$\therefore \mathbf{P} = 2h + 2r + \pi r$	(2)
1.1.2 $A - 2rh + \frac{1}{\pi}r^2$ $\checkmark 2rh$	
$\int \frac{1}{2}\pi r^2$	(2)
1.2 $4 = 2rh + \frac{1}{2}\pi r^2$ $\checkmark 4 = 2rh + \frac{1}{2}\pi r^2$	
$\therefore 8 = 4rh + \pi r^2 \qquad \qquad \checkmark \frac{8 - \pi r^2}{4} = h$	
$\therefore 8 - \pi r^2 = 4rh \qquad \qquad 4r \qquad $	
$\therefore \frac{8 - \pi r^2}{4r} = h \qquad \qquad \checkmark \mathbf{P} = 2\left(\frac{8 - \pi r^2}{4r}\right) + 2r + \pi r$	
$\mathbf{P} = 2h + 2r + \pi r$ $\checkmark \mathbf{P} = \left(\frac{\pi}{2} + 2\right)r + \frac{4}{2}$	
$\therefore \mathbf{P} = 2\left(\frac{8-\pi r^2}{4r}\right) + 2r + \pi r$	(4)
$\therefore \mathbf{P} = \frac{8 - \pi r^2}{2r} + 2r + \pi r$ ÉcoleBooks	
$\therefore \mathbf{P} = \frac{4}{r} - \frac{\pi r}{2} + 2r + \pi r$	
$\therefore \mathbf{P} = \frac{4}{r} + \frac{\pi r}{2} + 2r$	
$\therefore \mathbf{P} = \frac{4}{r} + \left(\frac{\pi}{2} + 2\right)r$	
$\therefore \mathbf{P} = \left(\frac{\pi}{2} + 2\right)r + \frac{4}{r}$	

MATHEMATICS

GRADE 12

SESSION 17

(LEARNER HOMEWORK SOLUTIONS)

1.3	$C = 10\left(\frac{\pi}{2} + 2\right)r + \frac{40}{r}$	$\checkmark C = 10 \left(\frac{\pi}{2} + 2\right) r + \frac{40}{r}$
	$\therefore C = 5\pi r + 20r + 40r^{-1}$	$\checkmark C = 5\pi r + 20r + 40r^{-1}$
	$\therefore \mathbf{C}'(r) = 5\pi + 20 - 40r^{-2}$	$\checkmark 0 = 5\pi + 20 - \frac{40}{r^2}$
	$\therefore \mathbf{C}'(r) = 5\pi + 20 - \frac{40}{r^2}$	$\checkmark r = 1,06m$ (4)
	$\therefore 0 = 5\pi + 20 - \frac{40}{r^2}$	(+)
	$\therefore \frac{40}{r^2} = 5\pi + 20$	
	$\therefore \frac{40}{5\pi + 20} = r^2$	
	$\therefore \sqrt{\frac{40}{5\pi + 20}} = r$	[10]
	$\therefore r = 1,06$ m	[12]

QUESTION 2

-			
2.1.	At A and B: $f'(x) = 0$	✓= 0	
	$f'(x) = 12x^2 + 54x - 30 = 0$		
	$2x^2 + 9x - 5 = 0$	\checkmark substitution of x values	
	(2x-1)(x+5) = 0 1 ÉcoleBooks	✓ √ ;324)	
	$x = \frac{1}{2}$ or $x = -5$	-35	
	$f\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^3 + 27\left(\frac{1}{2}\right)^2 - 30\left(\frac{1}{2}\right) - 1$	• • <u>4</u>)	(6)
	$=\frac{-35}{4}(-8,75)$		
	$f(-5) = 4(-5)^3 + 27(-5)^2 - 30(-5) - 1$		
	= 324		
	$\therefore A(-5;324), B\left(\frac{1}{2};\frac{-35}{4}\right)$		
2.2.	$Ave \ Grad = \frac{324 - \left(\frac{-35}{4}\right)}{1}$	✓ subs x and y values $\sqrt{\frac{1}{2}}$ (-60,5)	
	$-5 - \frac{1}{2}$		(2)
	$=\frac{-121}{2}$ (-60,5)		
2.3.	C(0; -1)	√-1)	
	f'(0) = -30	✓ = -30	
	Equ. of tangent: $y = -30x - 1$	$\sqrt{-30x-1}$	(3)

MATHEMATICS GRADE 12 SESS

SESSION 18

(LEARNER HOMEWORK SOLUTIONS)

2.4.	$4x^3 + 27x^2 - 30x - 1 = -30x - 1$	✓cubic=tangent
	$4x^3 + 27x^2 = 0$	(+27) = 0
	$x^{2}(4x+27) = 0$	$\sqrt{\frac{27}{4}}$
	$x = 0 or x = -\frac{27}{4}$	(3)
	$\therefore x = \frac{-27}{4}$	

[14]

SOLUTIONS TO HOMEWORK: SESSION 18 TOPIC : LINEAR PROGRAMMING

QUESTION 1

1.1	$x + y \le 25$ $30x + 40y \le 840$ $x \le 0$ $y \le 0$ $x, y \in \mathbb{N}$	$ \sqrt{x + y} \le 25 \sqrt{30x + 40y} \le 840 \sqrt{x} \le 0, y \le 0, x, y \in \mathbb{N} $ $ (3) $
1.2	see diagram on next page	$ \sqrt{x} + y \le 25 \sqrt{30x} + 40y \le 840 \sqrt{x} \le 0 \sqrt{y} \le 0 \sqrt{x}, y \in \mathbb{N} $ $ (5) $
1.3	10x + 12y = P $\therefore y = -1.2x + \frac{P}{12}$ Intersection $I(x, y)$ of x + y = 25 and $30x + 40y = 840\therefore I(x, y) = (16, 9)Max at either I(x, y) or (25, 0)Max at I(x, y), P = 268\therefore x = 16, y = 9$	$ \sqrt{10x + 12y} = P $ $ \sqrt{10x + 12y} = 25 $ $ \sqrt{10x + 12y} = 268 $ $ \sqrt{10x + 12y} = 268 $ $ (4) $

MATHEMATICS GRADE 12 SESSION 18 (LEARNER HOMEWORK SOLUTIONS)

SOLUTIONS TO HOMEWORK: SESSION 18.2 TOPIC : TRIGONOMETRY

QUESTION 1

$$\frac{\sin(-145^{\circ}).\cos(-215^{\circ})}{\sin 510^{\circ}.\cos 340^{\circ}} = \frac{(-\sin 145^{\circ})(\cos 215^{\circ})}{(\sin 150^{\circ})(\cos 20^{\circ})} = \frac{(-\sin 35^{\circ})(-\cos 35^{\circ})}{(\sin 30^{\circ})(\cos 20^{\circ})} = \frac{\sin 35\cos 35^{\circ\circ}}{\left(\frac{1}{2}\right)(\cos 20^{\circ})} = \frac{2\sin 35\cos 35^{\circ\circ}}{\cos 20^{\circ}} = \frac{\sin 70^{\circ}}{\cos 20^{\circ}} = \frac{\cos 20^{\circ}}{\cos 20^{\circ}} = 1$$

ÉcoleBooks

[8]

QUESTION 2

[9]

MATHEMATICS	GRADE 12	SESSION 18	(LEARNER HOMEWORK SOLUTIONS)

QUESTION 3

$$\frac{\sin(90^\circ + \theta) + \cos(180^\circ + \theta)\sin(-\theta)}{\sin 180^\circ - \tan 135^\circ}$$
$$= \frac{\cos \theta + (-\cos \theta)(-\sin \theta)}{0+1}$$
$$= \cos \theta + \cos \theta . \sin \theta$$
$$= \cos \theta (1 + \sin \theta)$$

QUESTION 4

$$\frac{4\sin A \cos A \cos 2A \sin 15^{\circ}}{\sin 2A(1-2\sin^2 A)}$$

$$= \frac{4\sin A \cos A \cos 2A \sin 15^{\circ}}{2\sin A \cos A(1-2\sin^2 A)}$$

$$= \frac{2\cos 2A \sin 15^{\circ}}{\cos 2A}$$

$$= 2\sin 15^{\circ}$$

$$= 2\sin (45^{\circ} - 30^{\circ})$$

$$= 2[\sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}]$$

$$= 2\left[\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2}\right]$$
EcoleBooks
$$= 2\left[\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}\right]$$

$$= \frac{\sqrt{6} - \sqrt{2}}{2}$$

[5]

[6]

MATHEMATICS	GRADE 12	SESSION 18	(LEARNER HOMEWORK SOLUTIONS)

QUESTION 5

 $6\cos x - 5 = \frac{4}{\cos x}$ $6\cos^2 x - 5\cos x = 4$ $6\cos^2 x - 5\cos x - 4 = 0$ $(3\cos x - 4)(2\cos x + 1) = 0$ $\cos x = \frac{4}{3} \quad or \quad \cos x = \frac{-1}{2}$ no solution or $x = 120^\circ + k.360^\circ, k \in \mathbb{Z}$ or $x = 240^\circ + k.360^\circ, k \in \mathbb{Z}$

> Alternative solution for $\cos x = \frac{-1}{2}$ $x = k.360^{\circ} \pm 120^{\circ} k \in \mathbb{Z}$

[6]

Note: If candidate puts $\pm k.360$ then $k \in N_0$

QUESTION 6

ÉcoleBooks

$$\cos^{4} 375^{\circ} - \sin^{4} 345^{\circ}$$

= $\cos^{4} 15^{\circ} - \sin^{4} 15^{\circ}$
= $(\cos^{2} 15^{\circ} + \sin^{2} 15^{\circ})(\cos^{2} 15^{\circ} - \sin^{2} 15^{\circ})$
= (1)(cos 30°)
= $\frac{\sqrt{3}}{2}$

[6]

MATHEMATICS	GRADE 12	SESSION 18	(LEARNER HOMEWORK SOLUTIONS)
-------------	----------	------------	------------------------------

QUESTION 7

$$\sin 19^{\circ} = \frac{t}{1}$$

$$x^{2} + t^{2} = 1^{2}$$

$$\therefore x^{2} = 1 - t^{2}$$

$$\sin x = \sqrt{1 - t^{2}}$$

$$\sin 79^{\circ}$$

$$= \sin(19^{\circ} + 60^{\circ})$$

$$= \sin 19^{\circ} \cos 60^{\circ} + \cos 19^{\circ} \sin 60^{\circ}$$

$$= (t) \left(\frac{1}{2}\right) + \left(\frac{\sqrt{1 - t^{2}}}{1}\right) \left(\frac{\sqrt{3}}{2}\right)$$

$$= \frac{t + \sqrt{3}\sqrt{1 - t^{2}}}{2} = \frac{t + \sqrt{3 - 3t^{2}}}{2}$$

7.2

(3) **[10]**

MATHEMATICS GRADE 12 SESSION 19 (HOMEWORK SOLUTIONS)

SOLUTIONS TO HOMEWORK: SESSION 19.1 TOPIC: 2D TRIGONOMETRY

QUESTION 1

In
$$\triangle$$
CDA $DAC = 180 - 18,3 = 161,7^{\circ}$
 $DCA = 180 - (13,7 + 161,7) = 4,6^{\circ}$

 $\frac{AC}{sin13,7} = \frac{45}{sin4,6}$

$$\therefore AC = \frac{45sin13,7}{sin4,6} = 133m$$

In $\triangle ABC$ $sin18,3 = \frac{BC}{AC} = \frac{BC}{132,89}$ $\therefore BC = 132,89 \times sin18,3 = 42m$ Tree is 42m

Using Pythagoras: $AB = \sqrt{((132,89...)^2 - (41,7...))^2} = 126m = width of the river$

QUESTION 2

2a) $N\hat{D}B = 360^{\circ} - 208^{\circ} = 152^{\circ}$ $\therefore M\hat{B}D = 28^{\circ}$ $B\hat{D}A = 208^{\circ} - 67^{\circ} = 141^{\circ}$ $\frac{\sin D\hat{B}A}{97} = \frac{\sin 141^{\circ}}{120}$ $\therefore \sin D\hat{B}A = \frac{97 \sin 141^{\circ}}{120}$ $\therefore M\hat{B}A = 30,58^{\circ} + 28^{\circ}$ $\therefore \sin D\hat{B}A = 0,5087006494$ $\therefore M\hat{B}A = 58,58^{\circ}$

MATHEMATICS GRADE 12 SESSION 19 SELF STUDY (HOMEWORK SOLUTIONS)

SOLUTIONS TO HOMEWORK: SESSION 19.2 SELF

STUDY TOPIC: 3D TRIGONOMETRY

QUESTION 1

a) In
$$\triangle ABC$$

 $AC^2 = AB^2 + BC^2 - 2AB.BCcos(90 - \alpha)$
 $= d^2 + (\frac{1}{2}d)^2 - 2d(\frac{1}{2}d)sin\alpha$
 $= \frac{5}{4}d^2 - d^2sin\alpha = d^2(\frac{5}{4} - sin\alpha)$
 $\therefore AC = \frac{d\sqrt{(5-sin\alpha)}}{2}$
In $\triangle ACP$
 $tan\theta = \frac{PC}{AC}$
 $PC = h = ACtan\theta = \frac{d\sqrt{(5-sin\alpha)}}{2}tan\theta$
b) $h = \frac{300(\sqrt{5-4sin32})}{2}tan63 = 500m$
QUESTION 2
a) $\angle BAC = 180 - (\theta + \beta)$
b) $\frac{AB}{sin\beta} = \frac{x}{sin(180 - (\theta + \beta))}$
 $AB = \frac{xsin\beta}{sin(\theta + \beta)}$
c i) IF AB = AC Then $\theta = \beta$
 $AB = \frac{xsin\theta}{sin2\theta} = \frac{xsin\theta}{2sin\theta cos\theta} = \frac{x}{2cos\theta}$
ii) In $\triangle BDA$

$$B = 90 - \theta$$
$$\frac{AB}{\sin\theta} = \frac{AD}{\sin(90 - \theta)} \quad \therefore AD = \frac{\cos\theta(\frac{x}{2\cos\theta})}{\sin\theta} = \frac{x}{2\sin\theta}$$

MATHEMATICS	GRADE 12	SESSION 19 SELF STUDY	(HOMEWORK SOLUTIONS
-------------	----------	-----------------------	---------------------

QUESTION 3

a)

 $\frac{7}{\text{PB}} = \sin 18^{\circ}$ $\therefore \text{PB} = \frac{7}{\sin 18^{\circ}}$ $\therefore \text{PB} = 22,65247584...$

b)

$$\frac{18}{PA} = \cos 23^{\circ}$$

$$\therefore PA = \frac{18}{\cos 23^{\circ}}$$

$$\therefore PA = 19,55448679....$$

C)

 $AB^{2} = (22, 65)^{2} + (19, 55)^{2} - 2(22, 65)(19, 55).cos 42^{\circ}$ ∴ $AB^{2} = 237,0847954...$ ∴ AB = 15,40 m

QUESTION 4

In $\triangle AEB$: $EB^2 = 8^2 + 6^2$ $\therefore EB^2 = 100$ $\therefore EB = 10$ In \triangle GBC: $BC^2 = 15^2 + 8^2$ $\therefore BC^2 = 289$ \therefore BC = 17 In $\triangle ACB$: $EG^{2} = 15^{2} + 6^{2}$ $\therefore EG^2 = 261$ \therefore EG = $\sqrt{261}$ In $\triangle EGB$: $\therefore \left(\sqrt{261}\right)^2 = 17^2 + 10^2 - \left(2(17)(10)\cos \hat{EBG}\right)$ $\therefore 261 = 389 - (340 \cos E\hat{B}G)$ $\therefore -128 = -340 \cos \hat{EBG}$ $\therefore \frac{32}{85} = \cos \hat{EBG}$ $\therefore E\hat{B}G = 67,88^{\circ}$

The SSIP is supported by