

EC CURRICULUM: FET MATHEMATICS. MATHEMATICAL LITERACY AND TECHNICAL MATHEMATICS

MATHEMATICS

REVISION BOOKLET 1 OF 2020 PAPER 1 QUESTIONS AND MEMORANDA

A COLLECTION OF 2017 – 2019 NSC EXAM QUESTIONS GROUPED ACCORDING TO TOPICS

BASICS FIRST! > HARDWORK **NEVER KILLS!**

PRACTICE MAKES PERFECT!

YES

YOU

CAN!

building blocks for growth

PLEASE READ:

 Dear Grade 12 Mathematics learner Your final school exam result in Mathematics is extremely important. Good result in Mathematics will surely open doors for you that will influence the quality of your future life. So, Practice Mathematics regularly, not only before tests and exams but daily! Always tell yourself that 'I Can Do Mathematics!'. 1. REQUIRED RESOURCES A Mathematics textbook workbooks/ Revision Material Past Examination Question Papers A scientific calculator, etc. 	 Functions and graphs Linear, parabola; hyperbola; exponential and logarithmic; and their transformations Inverse functions Financial mathematics Simple and compound interest Logarithms in the context Present value and future value annuities (investments, sinking funds, loans and bond repayments) Nominal and effective interest rates Depreciation (reducing balance and straight line) Differential Calculus Limits and average gradient Einst principles and differentiation makes
 2. CONTENT CHECKLIST Below is a checklist you should use to ensure cole that you have covered the content for Grade 12 Mathematics in full: Paper 1 	 First principles and differentiation rules Gradient at a point and tangents to curves Polynomials (Remainder and Factor theorems) Cubic functions Applications (maxima and minima; rate of change)
Equations and inequalities	Probability
 Quadratic equations and inequalities Simultaneous equations Exponents and Surds Nature of Roots Number patterns and sequences General patterns (linear and quadratic) Sigma notation Arithmetic and geometric sequences and series (formulae for nth term & Sum) Sum to infinity; Convergence 	 Probability rules (identity, mutually exclusive events, independent events and complementary events). Venn-diagram, Tree diagram, Contingency table Counting principles

ENJOY MATHEMATICS... BECAUSE YOU CAN!

ALGEBRA, EQUATIONS AND INEQUALITIES

NOV 2017

QUESTION 1

1.1	Solve for x:			
	1.1.1	$x^2 + 9x + 14 = 0$		(3)
	1.1.2	$4x^2 + 9x - 3 = 0$	(correct to TWO decimal places)	(4)
	1.1.3	$\sqrt{x^2-5} = 2\sqrt{x}$		(4)
1.2		r x and y if: 4 and $x^2 + 2xy - $	$y^3 \equiv -2$	(6)
1.3	Given:	$f(x) = x^2 + 8x + 16$		

- Solve for x if f(x) > 0. 1.3.1 (3)
- For which values of p will f(x) = p have TWO unequal negative roots? 1.3.2 (4)
 - [24]

ÉcoloBooks **FEB 2018**

QUESTION 1

1.1	Solve for x:		
	1.1.1 $x^3 - 6x - 16 = 0$		(3)
	1.1.2 $2x^2 + 7x - 1 = 0$ (6)	correct to TWO decimal places)	(4)
1.2	List all the integers that are so	elutions to $x^2 - 25 < 0$.	(4)
1.3	Solve for x and y :		
	$-2y + x = -1$ and $x^2 - 7$	$7 - y^2 = -y$	(6)
1.4	Evaluate: $\frac{3^{2018} + 3^{2016}}{3^{2017}}$		(2)
1.5	Given: $t(x) = \frac{\sqrt{3x-5}}{x-3}$		

1.5.1 For which values of x will
$$\frac{\sqrt{3x-5}}{x-3}$$
 be real? (3)

1.5.2 Solve for x if
$$t(x) = 1$$
. (4)

NOV 2018

QUESTION 1

1.1	Solve fo	IT X:	
	1.1.1	$x^2 - 4x + 3 = 0$	(3)
	1.1.2	$5x^2 - 5x + 1 = 0$ (correct to TWO decimal places)	(3)
	1.1.3	$x^{2} - 3x - 10 > 0$	(3)
	1.1.4	$3\sqrt{x} = x - 4$	(4)
1.2	Solve si	multaneously for x and y :	
	3x - y =	= 2 and $2y + 9x^2 = -1$	(6)
1.3		= 64 and $5^{\sqrt{p}} = 64$, calculate, WITHOUT the use of a calculator, ue of: $\frac{3^{n+1}}{\sqrt{5}^{\sqrt{p}}}$	
		$\sqrt{5}^{49}$	(4) [23]
	010		

NOV 2019

Class . . .

QUESTION 1

1.1 Solve for x:

- $1.1.1 \qquad x^2 + 5x 6 = 0 \tag{3}$
- 1.1.2 $4x^2 + 3x 5 = 0$ (correct to TWO decimal places) (3)

1.1.3
$$4x^2 - 1 < 0$$
 (3)

1.1.4
$$\left(\sqrt{\sqrt{32}+x}\right)\left(\sqrt{\sqrt{32}-x}\right) = x$$
 (4)

- 1.2 Solve simultaneously for x and y: y + x = 12 and xy = 14 - 3x (5)
- Consider the product 1 × 2 × 3 × 4 × ... × 30.
 Determine the largest value of k such that 3^k is a factor of this product. (4)
 [22]

PATTERNS, SEQUENCES AND SERIES

NOV 2017

QUESTION 2

2.1	Given th	the following quadratic number pattern: 5; -4; -19; -40;	
	2.1.1	Determine the constant second difference of the sequence.	(2)
	2.1.2	Determine the n^{th} term (T_v) of the pattern.	(4)
	2.1.3	Which term of the pattern will be equal to -25 939?	(3)
2.2	The first	three terms of an arithmetic sequence are $2k-7$; $k+8$ and $2k-1$.	
	2.2.1	Calculate the value of the 15th term of the sequence.	(5)
	2.2.2	Calculate the sum of the first 30 even terms of the sequence.	(4) [18]

QUESTION 3

A convergent geometric series consisting of only positive terms has first term a, constant ratio

r and n^{th} term, T_{n} , such that $\sum_{n=3}^{\infty} T_n = \frac{1}{4}$.

3.1	If $T_1 + T_2 = 2$, write down an expression for <i>a</i> in terms of <i>r</i> .	(2)
12	Calculate the values of a and a	2020

3.2 Calculate the values of a and r. (6)
[8]

FEB 2018 QUESTION 2

2.1 Given the following geometric sequence: 30 ; 10 ; $\frac{10}{3}$; ...

2.1.1 Determine *n* if the $n^{\prime\prime}$ term of the sequence is equal to $\frac{10}{729}$. (4)

2.1.2 Calculate:
$$30+10+\frac{10}{3}+...$$
 (2)

Derive a formula for the sum of the first n terms of an arithmetic sequence if the first term of the sequence is a and the common difference is d. (4)
[10]

QUESTION 3

The fu	st three terms of an arithmetic sequence are -1 ; 2 and 5.	
3.1	Determine the n^{i0} term, T_{ii} , of the sequence.	(2)
3.2	Calculate T_{43} .	(2)
3.3	Evaluate $\sum_{k=1}^{n} T_k$ in terms of <i>n</i> .	(3)
3.4	 A quadratic sequence, with general term T_n, has the following properties: T₁₁ = 125 T_n - T_{n-1} = 3n - 4 	
	Determine the first term of the sequence.	(6) [13]

NOV 2018

QUESTION 2

2.1	Given th	ne quadratic sequence: 2;3;10;23;	
	2.1.1	Write down the next term of the sequence.	(1)
	2.1.2	Determine the n^{th} term of the sequence.	(4)
	2.1.3	Calculate the 20 th term of the sequence.	(2)
2.2	Given th	ne arithmetic sequence: 35;28;21;	
	Calculat	te which term of the sequence will have a value of -140.	(3)
2.3		ch value of n will the sum of the first n terms of the arithmetic sequence in ION 2.2 be equal to the n^{th} term of the quadratic sequence in	
	QUEST	ION 2.1?	(6) [16]

QUESTION 3

A geometric series has a constant ratio of $\frac{1}{2}$ and a sum to infinity of 6.

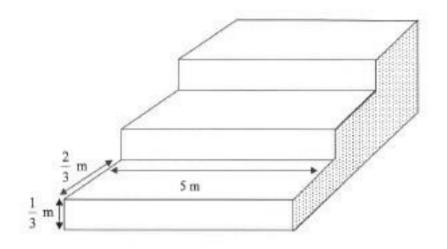
3.3 Given:
$$\sum_{k=1}^{n} 3(2)^{1-k} = 5.8125$$
 Calculate the value of *n*. (4)

3.4 If
$$\sum_{k=1}^{20} 3(2)^{1-k} = p$$
, write down $\sum_{k=1}^{20} 24(2)^{-k}$ in terms of p . (3)
[11]

NOV 2019

QUESTION 2

2.1.1 Write down the values of the next TWO terms of the sequence. (2)
2.1.2 Determine the general term of the sequence in the form
$$T_n = an^2 + bn + c$$
. (4)


2.2 Given the geometric series:
$$\frac{5}{8} + \frac{5}{16} + \frac{5}{32} + ... = K$$

2.2.2 Determine the largest value of *n* for which
$$T_n > \frac{5}{8192}$$
 (4)

[19]

QUESTION 3

- 3.1 Without using a calculator, determine the value of: $\sum_{y=3}^{10} \frac{1}{y-2} \sum_{y=3}^{10} \frac{1}{y-1}$ (3)
- 3.2 A steel pavilion at a sports ground comprises of a series of 12 steps, of which the first 3 are shown in the diagram below.
 Each step is 5 m wide. Each step has a rise of ¹/₃ m and has a tread of ²/₃ m, as shown in the diagram below.

The open side (shaded on sketch) on each side of the pavilion must be covered with metal sheeting. Calculate the area (in m²) of metal sheeting needed to cover both open sides.

(6) [9]

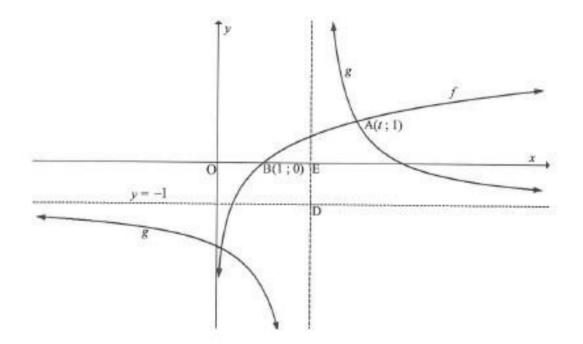
FUNCTIONS AND INVERSES

NOV 2017

QUESTION 4

Given: $f(x) = -ax^2 + bx + 6$

4.1	The gradient of the tangent to the graph of f at the point $\left(-1; \frac{7}{2}\right)$ is 3.		
	Show that $a = \frac{1}{2}$ and $b = 2$.	(5)	
4.2	Calculate the x-intercepts of f.	(3)	
4.3	Calculate the coordinates of the turning point of f .	(3)	
4.4	Sketch the graph of f . Clearly indicate ALL intercepts with the axes and the turning point.	(4)	
4.5	Use the graph to determine the values of x for which $f(x) > 6$.	(3)	
4.6	Sketch the graph of $g(x) = -x - 1$ on the same set of axes as f . Clearly indicate ALL intercepts with the axes.	(2)	

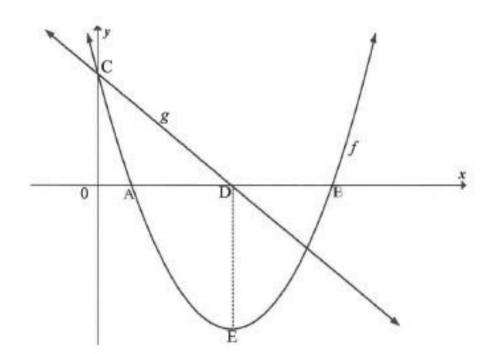

4.7 Write down the values of x for which $f(x).g(x) \le 0$.

(3) [23]

QUESTION 5

The diagram below shows the graphs of $g(x) = \frac{2}{x+p} + q$ and $f(x) = \log_3 x$.

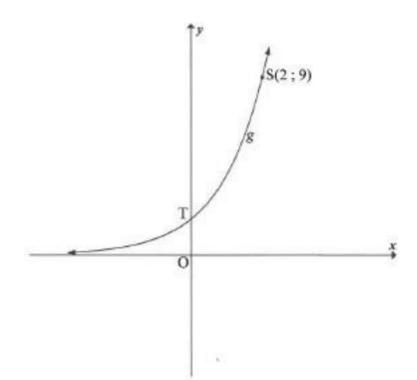
- y = −1 is the horizontal asymptote of g.
- B(1;0) is the x-intercept of f.
- A(t; 1) is a point of intersection between f and g.
- The vertical asymptote of g intersects the x-axis at E and the horizontal asymptote at D.
- OB = BE.


5.1	Write down the range of g.	(2)
5.2	Determine the equation of g .	(2)
5.3	Calculate the value of t.	(3)
5.4	Write down the equation of f^{-1} , the inverse of f, in the form $y = \dots$	(2)
5.5	For which values of x will $f^{-1}(x) < 3?$	(2)
5.6	Determine the point of intersection of the graphs of f and the axis of symmetry of g that has a negative gradient.	(3) [14]

FEB 2018

QUESTION 4

Below are the graphs of $f(x) = (x-4)^2 - 9$ and a straight line g.


- A and B are the x-intercepts of f and E is the turning point of f.
- C is the y-intercept of both f and g.
- The x-intercept of g is D. DE is parallel to the y-axis.

4.1	Write down the coordinates of E.	(2)
4.2	Calculate the coordinates of A.	(3)
4.3	M is the reflection of C in the axis of symmetry of f . Write down the coordinates of M.	(3)
4.4	Determine the equation of g in the form $y = mx + c$.	(3)
4.5	Write down the equation of g^{-1} in the form $y = \dots$	(3)
4.6	For which values of x will $x(f(x)) \le 0$?	(4) [18]

QUESTION 5

The graph of $g(x) = a^x$ is drawn in the sketch below. The point S(2; 9) lies on g. T is the y-intercept of g.

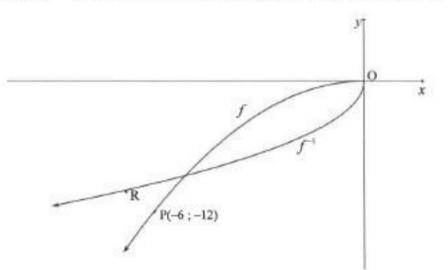
5.1	Write down the coordinates of T.	(2)
5.2	Calculate the value of a.	(2)
5.3	The graph h is obtained by reflecting g in the y-axis. Write down the equation of h .	(2)
5.4	Write down the values of x for which $0 < \log_3 x < 1$.	(2) [8]

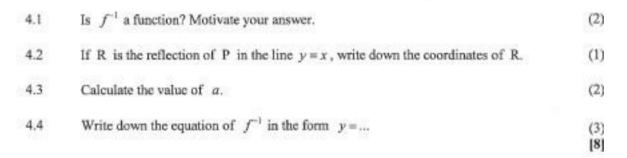
QUESTION 6

The function f, defined by $f(x) = \frac{a}{x+p} + q$, has the following properties:

- The range of f is $y \in R$, $y \neq 1$.
- The graph f passes through the origin.
- $P(\sqrt{2}+2;\sqrt{2}+1)$ lies on the graph f.

6.1	Write down the value of q .	(1)

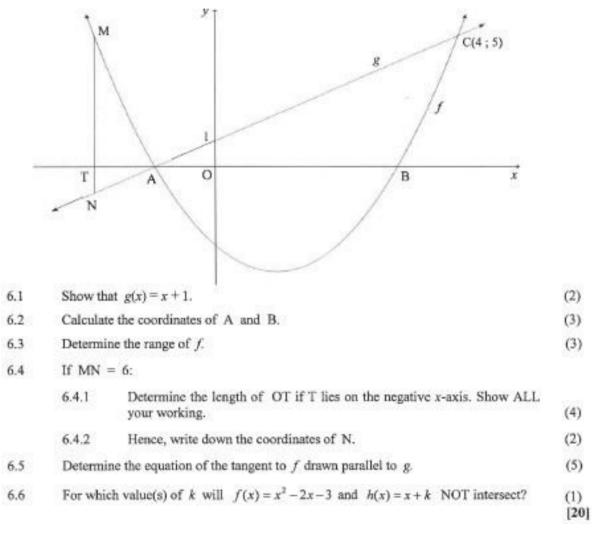

- 6.2 Calculate the values of a and p. (5)
- 6.3 Sketch a neat graph of this function. Your graph must include the asymptotes, if any. (4)


NOV 2018

QUESTION 4

In the diagram below, the graph of $f(x) = ax^2$ is drawn in the interval $x \le 0$.

The graph of f^{-1} is also drawn. P(-6; -12) is a point on f and R is a point on f^{-1} .

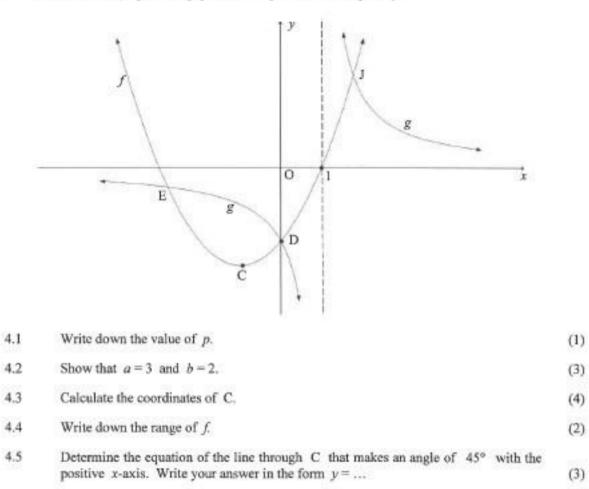

[10]

QUESTION 5

Given:	$f(x) = \frac{-1}{x - 1}$	
5.1	Write down the domain of f .	(1)
5.2	Write down the asymptotes of f .	(2)
5.3	Sketch the graph of f, clearly showing all intercepts with the axes and any asymptotes.	(3)
5.4	For which values of x will $x \cdot f'(x) \ge 0$?	(2) [8]

QUESTION 6

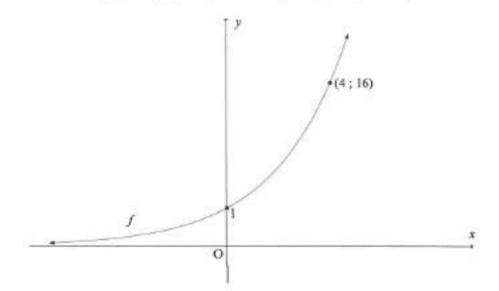
In the diagram below, A and B are the x-intercepts of the graph of $f(x) = x^2 - 2x - 3$. A straight line, g, through A cuts f at C(4; 5) and the y-axis at (0; 1). M is a point on f and N is a point on g such that MN is parallel to the y-axis. MN cuts the x-axis at T.



NOV 2019

QUESTION 4

Below are the graphs of $f(x) = x^2 + bx - 3$ and $g(x) = \frac{a}{x + p}$.


- f has a turning point at C and passes through the x-axis at (1;0).
- D is the y-intercept of both f and g. The graphs f and g also intersect each other at E and J.
- The vertical asymptote of g passes through the x-intercept of f.

- 4.6 Is the straight line, determined in QUESTION 4.5, a tangent to f? Explain your answer. (2)
- 4.7 The function h(x) = f (m x) + q has only one x-intercept at x = 0. Determine the values of m and q.
 (4) [19]

QUESTION 5

Sketched below is the graph of $f(x) = k^x$; $k \ge 0$. The point (4; 16) lies on f.

5.1	Determi	ne the value of k.	(2)
5.2		g is obtained by reflecting graph f about the line $y = x$. Determine the of g in the form $y =$	(2)
5.3	Sketch t	he graph g . Indicate on your graph the coordinates of two points on g .	(4)
5.4	Use you	r graph to determine the value(s) of x for which:	
	5.4.1	$f(x) \times g(x) > 0$	(2)
	5.4.2	$g(x) \leq -1$	(2)
5.5	If $h(x)$	$f(-x)$, calculate the value of x for which $f(x) - h(x) = \frac{15}{4}$	(4)
		2007 AG Detai 240	[16]

16 | Page

FINANCE, GROWTH AND DECAY

NOV 2017

QUESTION 6

6.1	monthly	nvested R10 000 for 3 years at an interest rate of $r \%$ p.a., compounded . At the end of this period, she received R12 146,72. Calculate r , correct decimal place.	(5)
6.2	over a p	es a loan from a bank to buy a car for R235 000. He agrees to repay the loan eriod of 54 months. The first instalment will be paid one month after the loan d. The bank charges interest at 11% p.a., compounded monthly.	
	6.2.1	Calculate Piet's monthly instalment.	(4)
	6.2.2	Calculate the total amount of interest that Piet will pay during the first year of the repayment of the loan.	(6) [15]
FEB 20 QUES)18 TION 7		
7.1	a bank a	une 2013 and at the end of each month thereafter, Asif deposited R2 500 into account that pays interest at 6% per annum, compounded monthly. He wants use to deposit this amount until 31 May 2018.	
		e how much money Asif will have in this account immediately after ng R2 500 on 31 May 2018.	(3)

7.2 On 1 February 2018, Genevieve took a loan of R82 000 from the bank to pay for her studies. She will make her first repayment of R3 200 on 1 February 2019 and continue to make payments of R3 200 on the first of each month thereafter until she settles the loan. The bank charges interest at 15% per annum, compounded monthly.

7.2.1	Calculate how much Genevieve will owe the bank on 1 January 2019.	(3)
7.2.2	How many instalments of R3 200 must she pay?	(5)
7.2.3	Calculate the final payment, to the nearest rand, Genevieve has to pay to settle the loan.	(5) [16]

NOV 2018

QUESTION 7

7.1	He will	ecided today that he will save R15 000 per quarter over the next four years, make the first deposit into a savings account in three months' time and he will s last deposit at the end of four years from now.	
	7.1.1	How much will Selby have at the end of four years if interest is earned at 8,8% per annum, compounded quarterly?	(3)
	7.1.2	If Selby decides to withdraw R100 000 from the account at the end of three years from now, how much will he have in the account at the end of four years from now?	(3)
7.2	Tshepo	takes out a home loan over 20 years to buy a house that costs R1 500 000.	
	7.2.1	Calculate the monthly instalment if interest is charged at 10,5% p.a., compounded monthly.	(4)
	7.2.2	Calculate the outstanding balance immediately after the 144 th payment was made.	(5) [15]

NOV 2019

QUESTION 6

6.1 Two friends, Kuda and Thabo, each want to invest R5 000 for four years. Kuda invests his money in an account that pays simple interest at 8,3% per annum. At the end of four years, he will receive a bonus of exactly 4% of the accumulated amount. Thabo invests his money in an account that pays interest at 8,1% p.a., compounded monthly.

Whose investment will yield a better return at the end of four years? Justify your answer with appropriate calculations.

(5)

(5)

- 6.2 Nine years ago, a bank granted Mandy a home loan of R525 000. This loan was to be repaid over 20 years at an interest rate of 10% p.a., compounded monthly. Mandy's monthly repayments commenced exactly one month after the loan was granted.
 - 6.2.1 Mandy decided to make monthly repayments of R6 000 instead of the required R5 066,36. How many payments will she make to settle the loan?
 - 6.2.2 After making monthly repayments of R6 000 for nine years, Mandy required money to fund her daughter's university fees. She approached the bank for another loan. Instead, the bank advised Mandy that the extra amount repaid every month could be regarded as an investment and that she could withdraw this full amount to fund her daughter's studies. Calculate the maximum amount that Mandy may withdraw from the loan account.

(4) [14]

DIFFERENTIAL CALCULUS

NOV 2017

QUESTION 7

7.1 Given: $f(x) = 2x^2 - x$

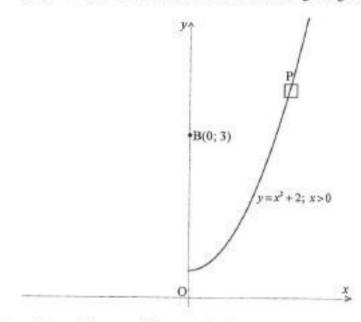
Determine f'(x) from first principles. (6)

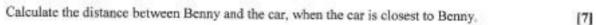
7.2 Determine:

7.2.1 $D_{x}[(x+1)(3x-7)]$ (2)

7.2.2
$$\frac{dy}{dx}$$
 if $y = \sqrt{x^3} - \frac{5}{x} + \frac{1}{2}\pi$ (4)
[12]

QUESTION 8


Given: $f(x) = x(x-3)^2$ with f'(1) = f'(3) = 0 and f(1) = 4


8.1	Show th	at f has a point of inflection at $x = 2$.	(5)
8.2	Sketch t points.	he graph of f , clearly indicating the intercepts with the axes and the turning	(4)
8.3	For whic	ch values of x will $y = -f(x)$ be concave down?	(2)
8.4			
	8.4.1	Determine the coordinates of the local maximum of <i>h</i> if $h(x) = f(x-2)+3$.	(2)
	8.4.2	Claire claims that $f'(2) = 1$.	
		Do you agree with Claire? Justify your answer.	(2) [15]

QUESTION 9

An aerial view of a stretch of road is shown in the diagram below. The road can be described by the function $y = x^2 + 2$, $x \ge 0$ if the coordinate axes (dotted lines) are chosen as shown in the diagram.

Benny sits at a vantage point B(0; 3) and observes a car, P, travelling along the road.

FEB 2018

QUESTION 8

- 8.1 Determine f'(x) from first principles if $f(x)=4x^2$. (5)
- 8.2 Determine:

8.2.1
$$D_x \left[\frac{x^2 - 2x - 3}{x + 1} \right]$$
 (3)

8.2.2
$$f^{v}(x)$$
 if $f(x) = \sqrt{x}$ (3)

QUESTION 9

The sketch below represents the curve of $f(x) = x^3 + bx^2 + cx + d$. The solutions of the equation f(x) = 0 are -2; 1 and 4.

9.1	Calculate the values of b , c and d .	(4)
9.2	Calculate the x-coordinate of B, the maximum turning point of f.	(4)
9.3	Determine an equation for the tangent to the graph of f at $x = -1$.	(4)
9,4	In the ANSWER BOOK, sketch the graph of $f''(x)$ Clearly indicate the x- and y-intercepts on your sketch.	(3)
9.5	For which value(s) of x is $f(x)$ concave upwards?	(2) [17]

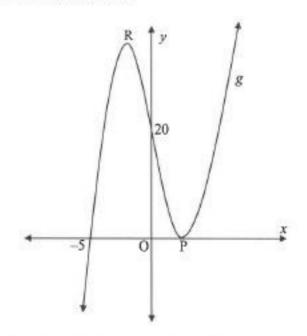
QUESTION 10

Given: $f(x) = -3x^3 + x$.

Calculate the value of q for which f(x) + q will have a maximum value of $\frac{8}{9}$. [6]

NOV 2018

QUESTION 8


8.1	Determine $f'(x)$ from first principles if it is given $f(x) = x^2 - 5$.	(5)
8.2	Determine $\frac{dy}{dx}$ if:	
	$8.2.1 \qquad y = 3x^3 + 6x^2 + x - 4$	(3)
	8.2.2 $yx - y = 2x^2 - 2x$; $x \neq 1$	(4) [12]

QUESTION 9

...

9.2

9.1 The graph of g(x) = x³ + bx² + cx + d is sketched below.
 The graph of g intersects the x-axis at (-5;0) and at P, and the y-axis at (0;20).
 P and R are turning points of g.

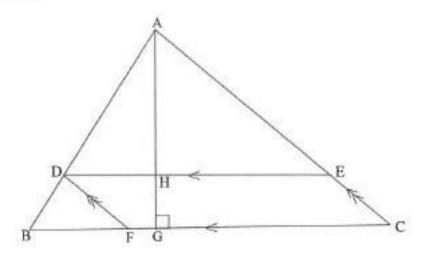
÷

9.1.1	Show that $b=1$, $c=-16$ and $d=20$.	(4)
9.1.2	Calculate the coordinates of P and R.	(5)
9.1.3	Is the graph concave up or concave down at (0 ; 20)? Show ALL your calculations.	(3)
• g(• g(• g	cubic function with: 3) = g'(3) = 0 0) = 27 f(x) > 0 when $x < 3$ and $g''(x) < 0$ when $x > 3$, etch graph of g indicating ALL relevant points.	(3) [15]

.

. .

22 | Page


QUESTION 10

In \triangle ABC:

- D is a point on AB, E is a point on AC and F is a point on BC such that DECF is a
 parallelogram.
- •' BF: FC = 2:3.
- The perpendicular height AG is drawn intersecting DE at H.

(NOTE: Area of a parallelogram = base × ⊥ height)

- AG = t units.
- BC = (5 1) units.

10.1	Write down AH : HG.	(1)
10.2	Calculate / if the area of the parallelogram is a maximum.	

(5)

NOV 2019

QUESTION 7

7.1	Determine $f'(x)$	from first principles if it is given that	f(x) = 4 - 7x.	(4)

7.2 Determine
$$\frac{dy}{dx}$$
 if $y = 4x^8 + \sqrt{x^3}$ (3)

7.3 Given: $y = ax^2 + a$

Determine:

$$7.3.1 \qquad \frac{dy}{dx} \tag{1}$$

7.3.2
$$\frac{dy}{da}$$
 (2)

7.4 The curve with equation $y = x + \frac{12}{x}$ passes through the point A(2; b). Determine the equation of the line perpendicular to the tangent to the curve at A. (4) [14]

QUESTION 8

After flying a short distance, an insect came to rest on a wall. Thereafter the insect started crawling on the wall. The path that the insect crawled can be described by $h(t) = (t-6)(-2t^2 + 3t - 6)$, where h is the height (in cm) above the floor and t is the time (in minutes) since the insect started crawling.

8.1	At what height above the floor did the insect start to crawl?	(1)
8.2	How many times did the insect reach the floor?	(3)
8.3	Determine the maximum height that the insect reached above the floor.	(4) [8]

QUESTION 9

9.3

Given: $f(x) = 3x^3$

9.1	Solve $f(x) = f'(x)$	(3)	

9.2 The graphs f, f' and f'' all pass through the point (0; 0).

9.2.1	For which of the graphs will (0; 0) be a stationary point?	(1
9.2.2	Explain the difference, if any, in the stationary points referred to in QUESTION 9.2.1.	(2
Determin	the the vertical distance between the graphs of f' and f'' at $x = 1$.	(

9.4 For which value(s) of x is
$$f(x) - f'(x) < 0$$
? (4)

[13]

PROBABILITY

NOV 2017

QUESTION 10

A survey was conducted among 100 Grade 12 learners about their use of Instagram (I), Twitter (T) and WhatsApp (W) on their cell phones. The survey revealed the following:

- 8 use all three.
- 12 use Instagram and Twitter.
- 5 use Twitter and WhatsApp, but not Instagram.
- x use Instagram and WhatsApp, but not Twitter.
- 61 use Instagram.
- 19 use Twitter.
- 73 use WhatsApp.
- 14 use none of these applications.

10.1	Draw a Venn diagram to illustrate the information above.	(4)
10.2	Calculate the value of x.	(2)
10.3	Calculate the probability that a learner, chosen randomly, uses only ONE of these applications.	(2) [8]

QUESTION 11

A company uses a coding system to identify its clients. Each code is made up of two letters and a sequence of digits, for example AD108 or RR 45789.

The letters are chosen from A; D; R; S and U. Letters may be repeated in the code.

The digits 0 to 9 are used, but NO digit may be repeated in the code.

11.1	How many different clients can be identified with a coding system that is made up of TWO letters and TWO digits?	(3)
11.2	Determine the least number of digits that is required for a company to uniquely identify 700 000 clients using their coding system.	(3) [6]

FEB 2018

QUESTION 11

- 11.1 Veli and Bongi are learners at the same school. Some days they arrive late at school. The probability that neither Veli nor Bongi will arrive late on any day is 0,7.
 - 11.1.1 Calculate the probability that at least one of the two learners will arrive late on a randomly selected day.
 - 11.1.2 The probability that Veli arrives late for school on a randomly selected day is 0,25, while the probability that both of them arrive late for school on that day is 0,15. Calculate the probability that Bongi will arrive late for school on that day.
 - 11.1.3 The principal suspects that the latecoming of the two learners is linked. The principal asks you to determine whether the events of Veli arriving late for school and Bongi arriving late for school are statistically independent or not. What will be your response to him? Show ALL calculations.
- 11.2 The cards below are placed from left to right in a row.

* *	·	***	\$* *	2	** . *
• :		***		* *2	

11.2.1	In how many different ways can these 6 cards be randomly arranged in a row?	(2)
11.2.2	In how many different ways can these cards be arranged in a row if the diamonds and hearts are placed in alternating positions?	(3)
11.2.3	If these cards are randomly arranged in a row, calculate the probability that ALL the hearts will be next to one another.	(3) [15]

NOV 2018 QUESTION 11

Given the digits: 3;4;5;6;7;8 and 9

11.1	Calculat	Calculate how many unique 5-digit codes can be formed using the digits above, if:		
	11.1.1	The digits may be repeated	(2)	
	11.1.2	The digits may not be repeated	(2)	
11.2	• Dig • The	ny unique 3-digit codes can be formed using the above digits, if: its may be repeated code is greater than 400 but less than 600 code is divisible by 5	(3) [7]	

(1)

(3)

(3)

QUESTION 12

Determine the value(s) of y if A and B are mutually exclusive.

12.2 An organisation decided to distribute gift bags of sweets to a Grade R class at a certain school. There is a mystery gift in exactly $\frac{1}{4}$ of the total number of bags.

Each learner in the class may randomly select two gift bags of sweets, one after the other. The probability that a learner selects two bags of sweets with a mystery gift

is $\frac{7}{118}$. Calculate the number of gift bags of sweets with a mystery gift inside. (6)

[9]

(3)

NOV 2019

QUESTION 10

The school library is open from Monday to Thursday. Anna and Ben both studied in the school library one day this week. If the chance of studying any day in the week is equally likely, calculate the probability that Anna and Ben studied on:

10.1	The same day	(2)
10.2	Consecutive days	(3)

QUESTION 11

11.1	Events A and B are independent. $P(A) = 0.4$ and $P(B) = 0.25$.			
	11.1.1 Represent the given information on a Venn diagram. Indicate on the Ven diagram the probabilities associated with each region.		n (3)	
	11.1.2	Determine P(A or NOT B).	(2)	
11.2	Motors I	ncorporated manufacture cars with 5 different body styles. 4 different interior		

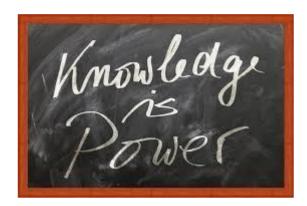
BODY STYLES	INTERIOR COLOURS	EXTERIOR COLOURS
	Blue	Silver
	65000400	Blue
Five body styles	Grey	White
	Black	Green
		Red
	Red	Gold

colours and 6 different exterior colours, as indicated in the table below.

The interior colour of the car must NOT be the same as the exterior colour.

Motors Incorporated wants to display one of each possible variation of its car in their showroom. The showroom has a floor space of 500 m^2 and each car requires a floor space of 5 m^2 .


Is this	display possible?	Justify your answer with the necessary calculations.	(6)
			[11]

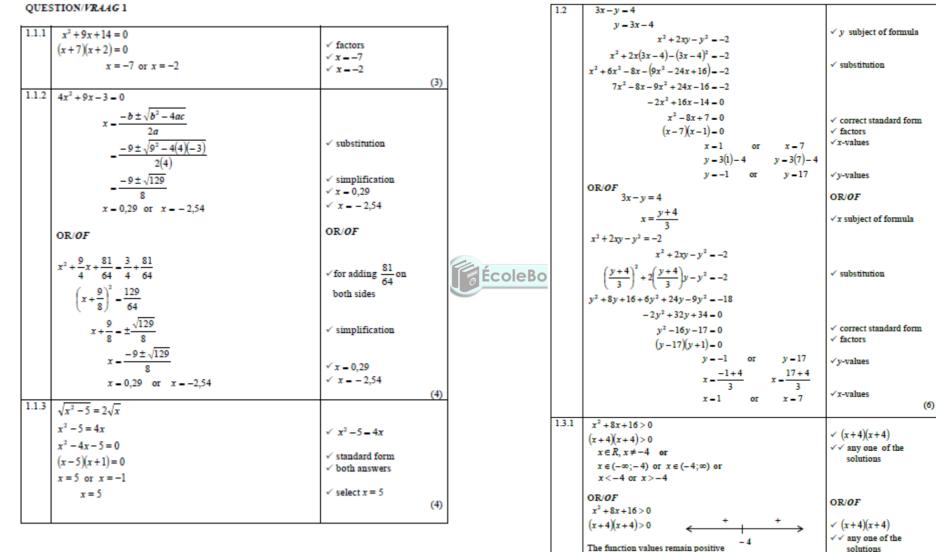

ANNEXURE A: MATHEMATICS INFORMATION SHEET INFORMATION SHEET: MATHEMATICS

$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			
A = P(1+ni)	A=P(1-ni)	$A = P(1-i)^n$	$A = P(1+i)^{s}$
$T_n = a + (n-1)d$	$S_{n} = \frac{n}{2}[2$	a+(n-1)d	
$T_s = ar^{n-1}$	$S_s = \frac{a(r')}{r}$	$\left(\frac{r-1}{r}\right)$; $r \neq 1$ S_{α}	$=\frac{a}{1-r}; -1 < r < 1$
$F = \frac{x[(1+i)^n - 1]}{i}$	Р	$=\frac{x[1-(1+i)^{-x}]}{i}$	
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f}{h}$	(x)		
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	(1) ² M	$\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$	
y = mx + c	$y - y_1 = m(x - x_1)$) $m = \frac{y_2 - x_2}{x_2 - x_2}$	$\frac{v_1}{x_1}$ $m = \tan n$
$(x-a)^2+(y-b)^2=r^2$			- X
In $\triangle ABC$: $\frac{a}{\sin A} = \frac{b}{\sin B}$ $a^2 = b^2 + c^2$			
area $\triangle ABC =$			
$\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$		$\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$	
$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$		$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$	
$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \end{cases}$	Si	$n2\alpha = 2\sin\alpha.\cos\alpha$	
$2\cos^2 \alpha - 1$			
Σ_{r}		$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{2}$	
$\overline{x} = \frac{\sum x}{n}$ $P(A) = \frac{n(A)}{n(S)}$		$\sigma^2 = \frac{n}{n}$	
$P(A) = \frac{m(A)}{n(S)}$		P(A or B) = P(A)	+ P(B) - P(A and B)
a + bx	Ь	$=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^2}$	
		$\sum (x-x)^2$	

EC CURRICULUM: FET MATHEMATICS, MATHEMATICAL LITERACY AND TECHNICAL MATHEMATICS

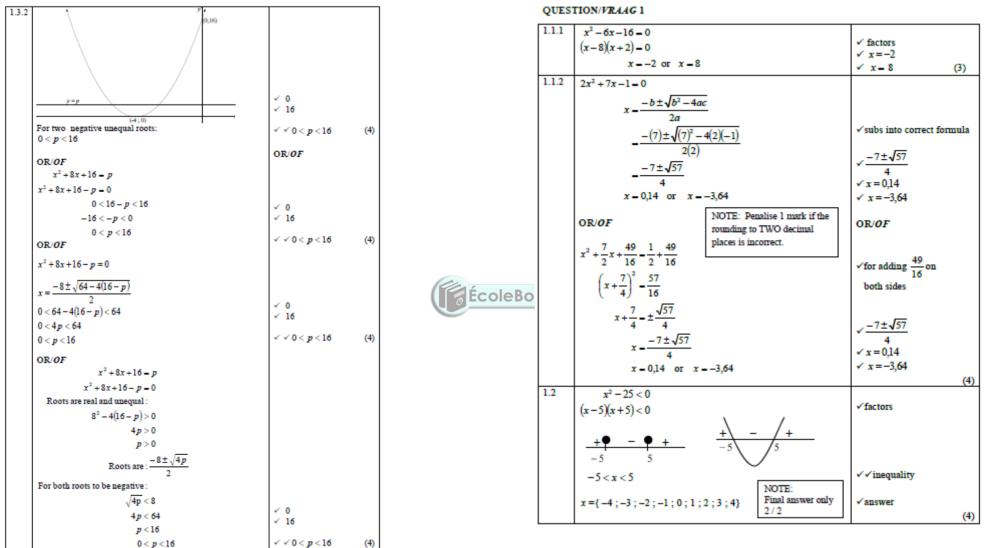
MEMORANDA GROUPED ACCORDING TO TOPICS

a elia


hilev

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

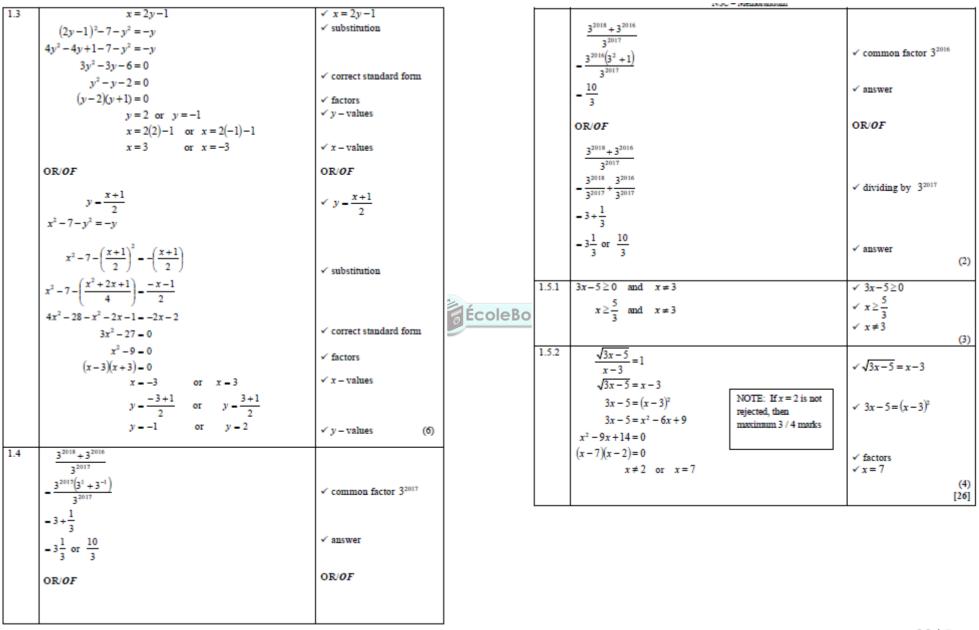
Download more resources like this on ECOLEBOOKS.COM


EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020

EQUATIONS AND INEQUALITIES NOV 2017

 $x \in \mathbb{R}, x \neq -4$

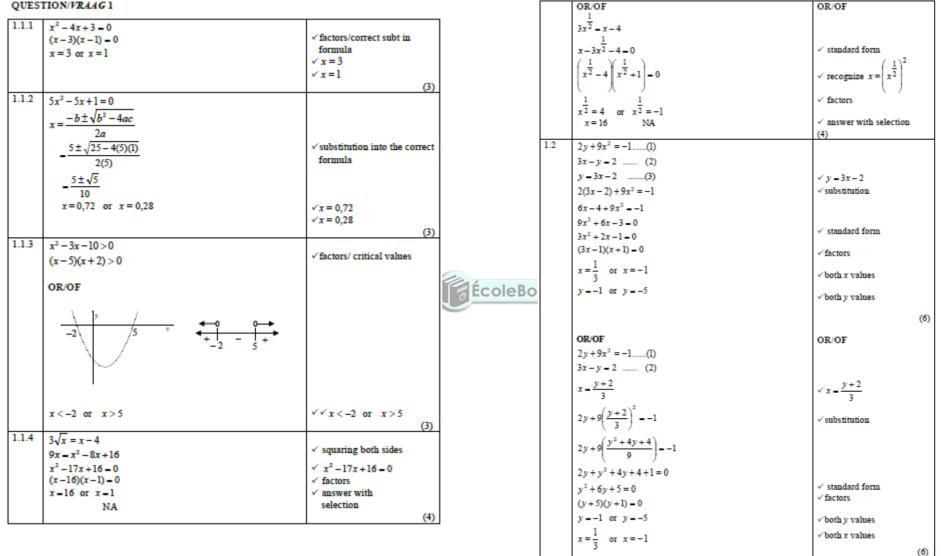
(3)



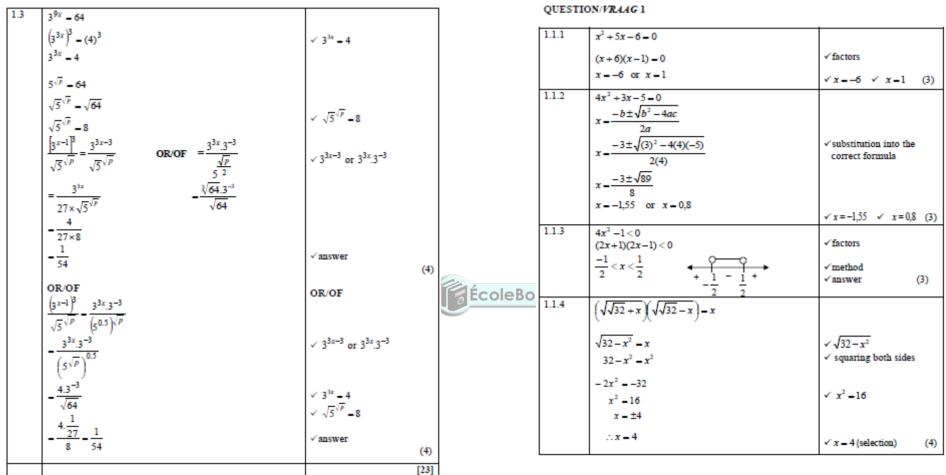
FEB 2018

[24]

Download more resources like this on ECOLEBOOKS.COM

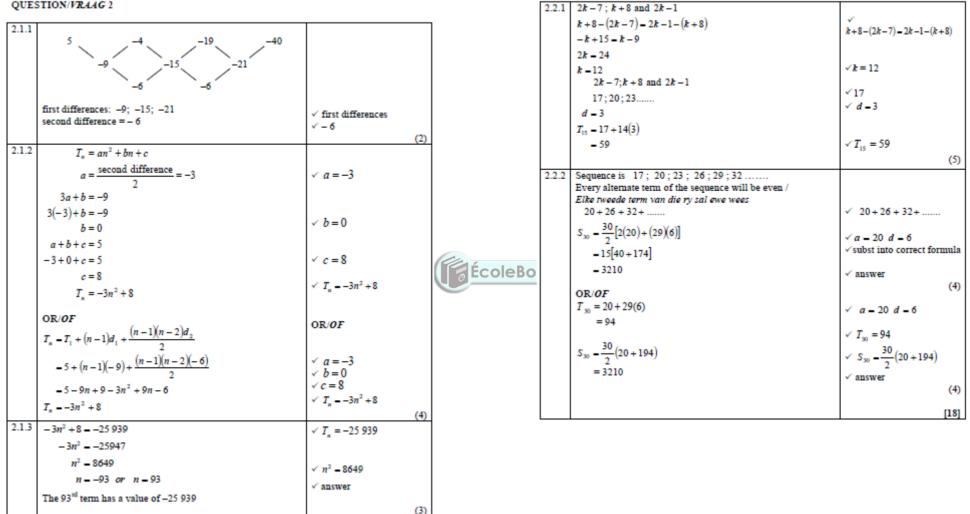

EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020

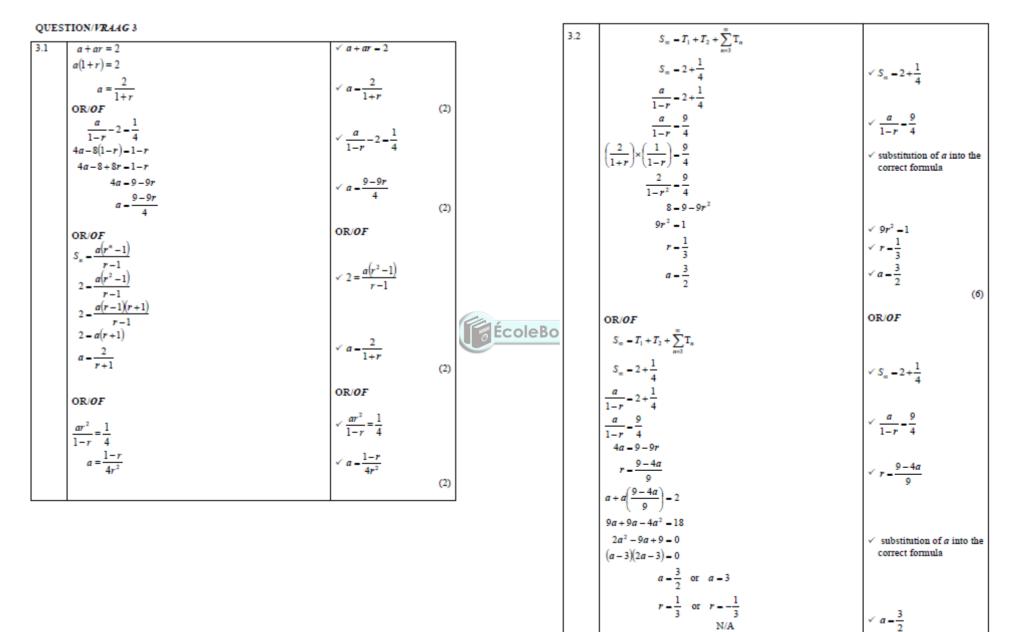
33 | Page


NOV 2018

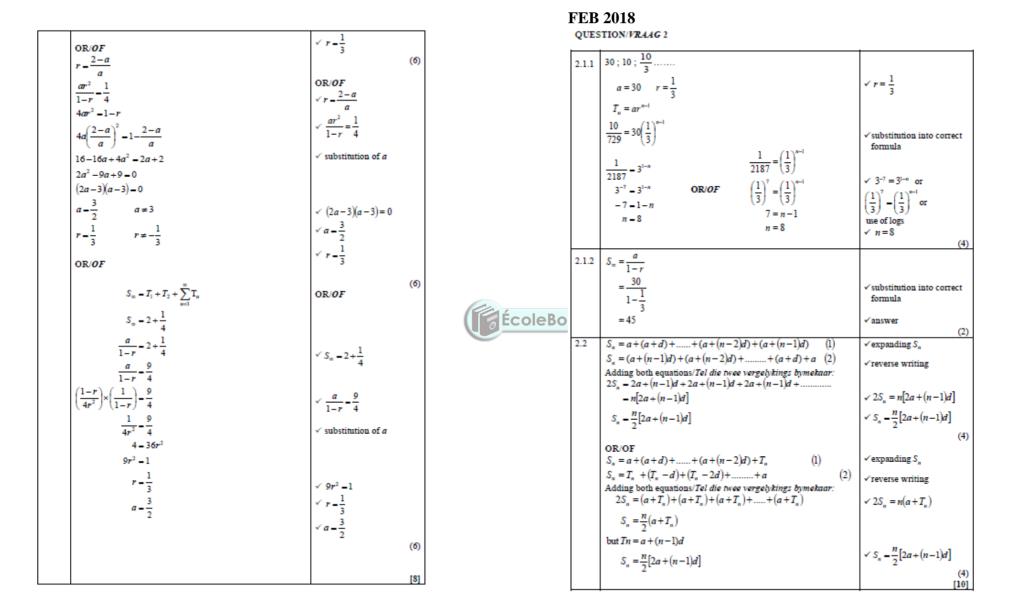
OUESTION/VRAAG1

Download more resources like this on ECOLEBOOKS.COM


EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020



1.2	y + x - 12		
	y = -x + 12(1)	$\checkmark y$ subject of the formula	
	xy =14-3x(2)		
	Sub (1) into (2)		
	x(-x+12) = 14 - 3x	✓ substitution	
	$-x^2 + 12x - 14 + 3x = 0$		
	$-x^{2}+15x-14=0$		
	$x^2 - 15x + 14 = 0$	✓ simplification	
	(x-14)(x-1) = 0		
	x = 14 or x = 1	✓ both values of x	
	y = -2 or $y = 11$	\checkmark both values of y (5)	
	OR/OF	OR/OF	
	y+x-12		
	x = -y + 12(1)	$\checkmark x$ subject of the formula	ÉcoleBooks
	xy = 14 - 3x(2)		
	Sub (1) into (2)		
	y(-y+12) = 14 - 3(-y+12)	✓ substitution	
	$12y - y^2 - 14 + 36 - 3y = 0$ - y ² + 9y + 22 = 0	✓ simplification	
	$y^2 - 9y - 22 = 0$		
	(y+2)(y-11) = 0		
	y = -2 or $y = 11$	\checkmark both values of y	
	x = 14 or $x = 1$	\checkmark both values of x (5)	
1.3	3 6 9 12 15 18 21 24 27 30	✓ identifying multiples of 3	
	3 3 3 ² 3 3 3 ² 3 3 3 ³ 3	√ten multiples of 3	
	∴ <i>k</i> = 14	✓ powers of 3	
		√answer (4)	
		[22]	l


EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020

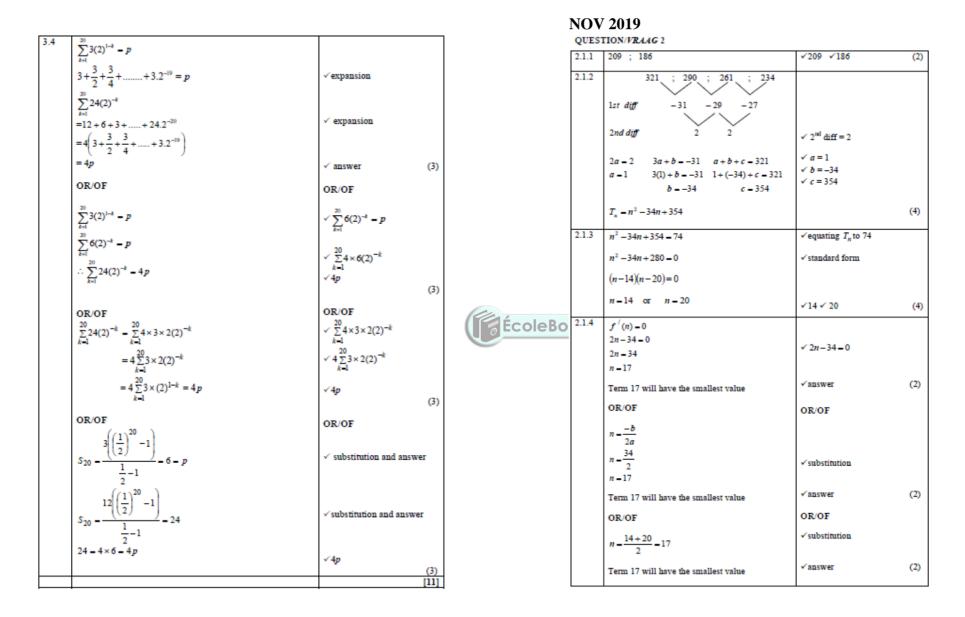
NUMBER PATTERNS, SEQUENCES AND SERIES NOV 2017

EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020

39 | P a g e

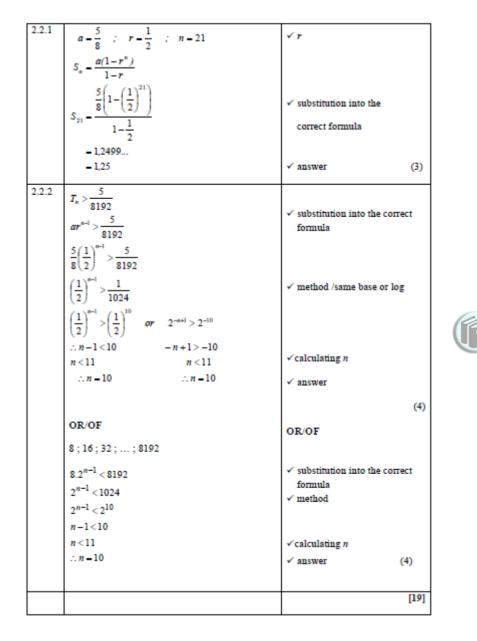
-		
3.1	-1; 2; 5 $T_n = -1 + (n-1)(3)$ = 3n - 4	$\checkmark 3n$ $\checkmark -4$ (2)
3.2	$\begin{array}{c} T_{43} = 3(43) - 4 \\ = 125 \\ \end{array} \begin{array}{c} T_{43} = -1 + (43 - 1)(3) \\ = 125 \\ \end{array} \\ \hline \text{NOTE:} \\ \text{Answer only } 2 / 2 \\ \end{array}$	✓ subs of 43 ✓ answer (2)
3.3	$T_n = 3n - 4$ $S_n = \sum_{k=1}^{n} T_k = -1 + 2 + 5 + \dots + 3n - 4$ Answer only 2.7.2	$\checkmark S_n = \sum_{k=1}^n T_k$
	$S_n = \frac{n}{2} [-1 + 3n - 4] \text{or} S_n = \frac{n}{2} [-2 + (n - 1)3] \\ = \frac{n}{2} [3n - 5] \\ = \frac{3n^2 - 5n}{2}$	✓ substitution into correct formula ✓ $\frac{n}{2}[3n-5]$ or $\frac{3n^2-5n}{2}$
	0R/ <i>0F</i>	0R/ <i>0F</i>
	$T_n = 3n - 4$ $\sum_{k=1}^{n} T_k = 3(1) - 4 + 3(2) - 4 + 3(3) - 4 + \dots + 3n - 4$	✓ (1)-4+3(2)-4+3(3)-4+
	-3(1+2+3++n)-4n $-\frac{3n(n+1)}{2}-4n$ $-\frac{3n^2-5n}{2}$	$\checkmark 3(1+2+3++n)-4n$ $\checkmark \frac{3n^2-5n}{2}$ (3)

3.4	$T_{11} = (T_{11} - T_{10}) + (T_{10} - T_{9}) + (T_{9} - T_{8})$	$)++(T_3-T_2)+(T_2-T_1)$	$+T_{1}$	 ✓ generating sum ✓ 29+26+23+2
	$125 = 29 + 26 + 23 + \dots 2 + T_1$			
	$-\frac{10}{2}(29+2)+T_1$			$\sqrt{\frac{10}{2}(29+2)}$
	-155+T	NOTE:		✓ 155
	$T_1 = -30$			✓ - 30
	1, = -30	Answer only 1/6		50
	0R/ <i>0F</i>	If they only use $3n-4$ breakdown 0 / 6		0R/ <i>0F</i>
	$T_{-} = an^2 + bn + c$			
	$T_n = an + bn + c$ $\therefore T_{11} = 121a + 11b + c = 125$			
	$T_n - T_{n-1} = an^2 + bn + c - [a(n-1)^2]$	+b(n-1)+c		
	$= an^2 + bn + c - an^2 + 2an - a - bn$	· · · ·		
	-2an+b-a			
				✓ 121a+11b+c=125
	$T_n - T_{n-1} = 3n - 4$			
	2a = 3 and b - a = -4			\checkmark calculating $T_n - T_{n-1}$ in
	$a = \frac{3}{2}$ and $b = -\frac{5}{2}$			terms of <i>a</i> , <i>b</i> and <i>c</i>
	2 2 2			
	121a + 11b + c = 125			3
				$\sqrt{a-\frac{3}{2}}$
	$121\left(\frac{3}{2}\right)+11\left(-\frac{5}{2}\right)+c=125$			$\checkmark a - \frac{3}{2}$ $\checkmark b\frac{5}{2}$
	c = -29			2
	- 3 ₋₂ 5 - 00			
	$T_n = \frac{3}{2}n^2 - \frac{5}{2}n - 29$			✓ c = -29
	$T_1 = \frac{3}{2}(1)^2 - \frac{5}{2}(1) - 29$			
				√ -30
	30			✓ -30 (6)
				[13]


EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020

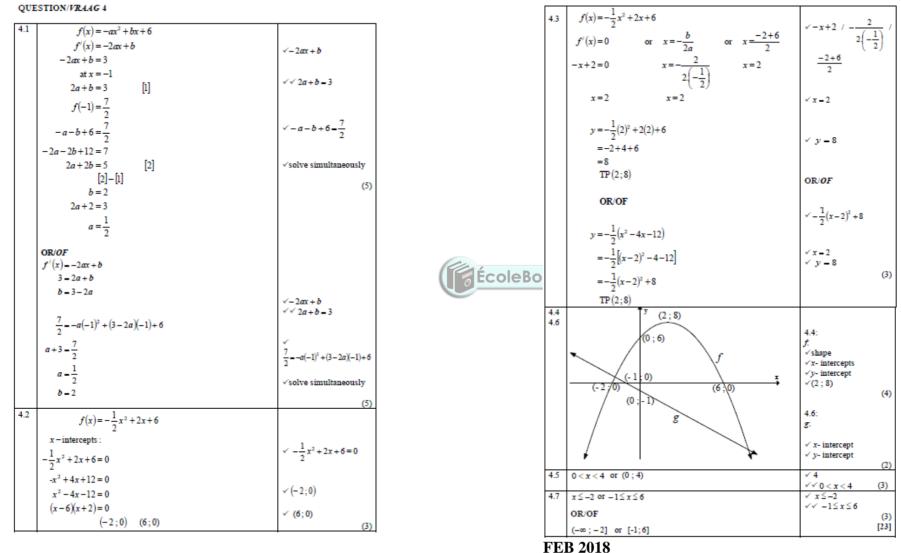
QUESTION/VRAAG 3

NOV 2018



$\begin{bmatrix} x_{1}^{n} - x_{1}^{n} - y_{1} - y_{2}^{n} - y_{1}^{n} - y_{2}^{n} - y_{2}^$				1	QUT2	IION/FRANGS	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.1.1	42					1
$\begin{bmatrix} a = 3 & 3(3) + b = 1 & (3) + (-5) + c = 7 \\ T_{1} = 3n^{2} - 5n + 7 & (-7) + c = 7 \\ T_{1} = 3n^{2} - 5n + 7 & (-7) + c = 7 \\ T_{1} = 3n^{2} - 5n + c & (-7) + c & (-7) \\ T_{1} = 12 + 5n - c & 2 & (-7) + c & (-7) \\ T_{1} = 12 + 5n - c & 2 & (-7) + c & (-7) \\ T_{1} = 12 + 5n - c & 2 & (-7) + c & (-7) \\ T_{1} = 12 + 5n - c & 2 & (-7) + c & (-7) \\ T_{1} = 12 + 5n - c & 2 & (-7) + c & (-7) \\ T_{1} = 12 + 5n - c & 2 & (-7) + c & (-7) + c & (-7) \\ T_{1} = 12 + 5n - c & 2 & (-7) + c & (-7) + c & (-7) \\ T_{1} = 12 + 5n - c & 2 & (-7) + c $	212	2			3.1	$r = \frac{1}{2}$ and $S_{-} = 6$	
$ \begin{vmatrix} & & & & & & & & & & & & & & & & & & $	2.1.2					2	
$\begin{bmatrix} 1 & 2 & m^{2} - 2m^{2} - 2m + 1 & \sqrt{T_{n}} = am^{2} + bm + c & (4) \\ 0 & R & OF & (2) \\ 2a = 6 & (2) \\ a = 5 & (2) \\ T_{n} = 3m^{2} + bm + c & (1) \\ T_{n} = 12 + 2b + c - 2 & b + c - 1 & \dots (1) \\ T_{n} = 12 + 2b + c - 3 & (2) \\ T_{n} - T_{n} > b + c - 1 & (2) \\ T_{n} - T_{n} > b + c - 1 & (2) \\ T_{n} - T_{n} > b + c - 1 & (2) \\ T_{n} - T_{n} > b - 8 & (2) \\ T_{n} = 3m^{2} - bm + 7 & (T_{n} = am^{2} + bm + c & (4) \\ (2) & T_{n} = 3m^{2} - bm + 7 & (T_{n} = am^{2} + bm + c & (4) \\ T_{n} = 3(20)^{2} - b(20)^{2} + 7 & (2) \\ T_{n} = 3(20)^{2} - b(20)^{2} + 7 & (2) \\ T_{n} = 1047 & (2) \\ m = 26 & (2) \\ T_{n} = 1047 & (2) \\ m = 26 & (2) \\ T_{n} = 1047 & (2) \\ m = 26 & (2) \\ T_{n} = 1047 & (2) \\ T_$						$s = \frac{a}{a}$	
$\frac{1}{2^{n} - 5} = \frac{1}{2^{n} + 5} = \frac{1}{2^{n} + 6} = \frac{1}{2^{n} + 1} = \frac{1}{2^{n} + 2^{n} + 6} = \frac{1}{2^{n} + 1} = \frac{1}{2^{n} + 2^{n} + 6} = \frac{1}{2^{n} + 1} = \frac{1}{2^{n} + 2^{n} + 2^{n} + 1} = \frac{1}{2^{n} + 2^{n} + 2^{n} + 1} = \frac{1}{2^{n} + 2^{n} + 1} = \frac{1}{2^{n} + 2^{n} + 2^{n} + 1} = \frac{1}{2^{n} + 2^{n} + 2^{n} + 1} = \frac{1}{2^{n} + 2^{n} + 2^{n}$						$\sqrt[n]{1-r}$	
$ \begin{vmatrix} 2^{n} = 6 & x = -3 & x = -1 & x =$		$I_n = 5n^2 - 6n + 7$				6 a	√ substitution
$ \begin{vmatrix} 2^{n} = 6 & x = -3 & x = -1 & x =$		OPIOE				0- <u>, 1</u>	Juojuluou
$ \begin{vmatrix} a = 3 & a = 3 & a = 3 \\ r_{1} = 2n^{2} + bn + c & r_{1} \\ r_{1} : 12n^{2} + bn - c & 3 & 2b + c = -1 & a = 1 \\ r_{1} : 12n^{2} + bn - c & 3 & 2b + c = -1 & a = 1 \\ r_{1} : 12n^{2} + bn + 2 & -10 & r_{1} \\ r_{1} : 12n^{2} + bn + 2 & -10 & r_{1} \\ r_{1} : 12n^{2} + bn + 2 & -10 & r_{1} \\ r_{1} : 12n^{2} + bn + 2 & -10 & r_{1} \\ r_{1} : 12n^{2} + bn + 2 & -10 & r_{1} \\ r_{1} : 12n^{2} + bn + 2 & -10 & r_{1} \\ r_{1} : 12n^{2} + bn + 2 & -10 & r_{1} \\ r_{1} : 12n^{2} + bn + 2 & -140 & r_{1} \\ r_{1} : 12n^{2} + bn + 2 & r_{1} : 12n^{2} \\ r_{1} : 12n^{2} + bn + 2 & r_{1} : 12n^{2} \\ r_{1} : 12n^{2} : 12n^{2} : 12n^{2} & r_{1} : 12n^{2} \\ r_{1} : 12n^{2} : 12n^{2} : 12n^{2} & r_{1} : 12n^{2} \\ r_{1} : 12n^{2} : $			OK/OF			1-2	
$ \begin{vmatrix} T_{n} = 3n^{2} + bn + c \\ T_{1} : 3 + b + c = 1 \\ T_{1} : 1 + b + c = 2 \\ Subt. in (1): -8 + c = -1 \\ c = 7 \\ T_{n} = 5n^{2} - 5n + 7 \\ \hline T_{n} = 7n^{2} + 7n^{2} + 7n^{2} + 7n^{2} + 7n^{2} + 7n^{2} + 2n^{2} + 7n^{2} + 2n^{2} + 2n^{2$			$\sqrt{q} = 3$			a = 3	√answer
$ \begin{vmatrix} \vec{r}_{1}:3+b+c=2 & b+c=-1 & \dots & (1) \\ \vec{r}_{1}:12+2b+c=3 & 2b+c=-9 & \dots & (2) \\ \vec{r}_{2}:17+b=-3 & 2b+c=-9 & \dots & (2) \\ \vec{r}_{2}:17+b=-3 & 2b+c=-9 & \dots & (2) \\ \vec{r}_{2}:17+b=-3 & 2b+c=-9 & \dots & (2) \\ \vec{r}_{2}:17+b=-4 & \vec{r}_{2}:12 & \vec{r}_{$		$T_{1} = 3n^{2} + bn + c$	u s				(2)
$\begin{bmatrix} 1, 3 \neq 0 \neq 1 = 2 0 \neq 1 = 1 \text{(i)} \\ T_{1}^{-}(1; 1 \neq 2 \neq c = 3 \text{(i)} \\ T_{1}^{-}(1; 2 \neq 1 \neq 1 \text{(i)} \\ T_{1}^{-}(1; 2 \neq 1 \mid 1 \text$					3.2	$T_n = ar^{n-1}$	
$\begin{bmatrix} r_{3} - T_{1} : b = -8 & & \forall b = -8 & \\ \text{Subtin (1):} -8 + c = -1 & & \forall c = 7 & \\ T_{n} = 3n^{2} - 8n + 7 & T_{n} = an^{2} + bn + c & (4) & \\ \hline 2.1.3 & T_{m} = 3(20)^{2} - 8(20) + 7 & & \forall \text{ubstitution} & \\ = 1047 & & \forall \text{asswere} & (2) \\ \hline 2.2 & T_{n} - 7n + 42 = -140 & & \forall T_{n} = -7n + 42 & \\ -7n + 42 = -140 & & \forall n = 26 & \\ n = 26 & & & n = 26 & \\ \hline 2.3 & S_{n} = \frac{n}{2}(a + 1) & \text{OROF } S_{n} - \frac{n}{2}[(2a + (n - 1)a]] & \\ S_{n} = \frac{n}{2}(55 - 7n + 42) & S_{n} - \frac{n}{2}(70 - 7n + 7) & \\ S_{n} = \frac{n}{2}(-7n + 77) & S_{n} - \frac{n}{2}(70 - 7n + 7) & \\ S_{n} = \frac{n}{2}(-7n + 77) & S_{n} - \frac{n}{2}(70 - 7n + 7) & \\ S_{n} = \frac{n}{2}(70 - 7n + 7) & S_{n} - \frac{n}{2}(70 - 7n + 7) & \\ S_{n} = \frac{n}{2}(70 - 7n + 7) & S_{n} - \frac{n}{2}(70 - 7n + 7) & \\ S_{n} = \frac{n}{2}(-7n + 77) & S_{n} - \frac{n}{2}(70 - 7n + 7) & \\ S_{n} = \frac{n}{2}(-7n + 77) & S_{n} - \frac{n}{2}(70 - 7n + 7) & \\ S_{n} = \frac{n}{2}(70 - 7n + 7) & S_{n} - \frac{n}{2}(70 - 7n + 7) & \\ S_{n} = \frac{n}{2}(70 - 7n + 7) & S_{n} - \frac{n}{2}(70 - 7n + 7) & \\ S_{n} = \frac{n}{2}(n - 7n + 77) & \\ S_{n} = \frac{n}{2}(n - 3n - 8n + 7 & \\ \hline 13n^{2} - 3nn - 8n + 7 & \\ \hline 13n^{2} - 3nn - 8n + 7 & \\ \hline 3NA & \\ SNA & SNA & \\ \hline NA & \\ \hline NA & \hline NA & \hline NA & \\ \hline NA & \hline NA & \\ \hline NA & \hline NA & \hline NA & \hline NA & \\ \hline NA & \\ \hline NA & \\ \hline NA & \hline NA $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						$T_{1} = 3 \left[\frac{1}{2} \right]$	$(1)^7$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$T_2 - T_1: b = -8$	$\checkmark b = -8$			(-)	$1_{8} = 3(\frac{1}{2})$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Substin (1): $0 \pm c = 1$				T. =	
$\frac{1}{2.3} \frac{1}{x_{s} = 3n^{2} - 8n + 7} (2 - 7) + 42 - 7n + 42 -$			1 7				(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					3.3	$\frac{n}{2}$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-				$\sum_{3(2)} = 5,8125$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.1.3	$T_{20} = 3(20)^2 - 8(20) + 7$	√substitution			2 2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		= 1047	√answer (2)			$3 + \frac{3}{2} + \frac{3}{4} + = 5,8125$	
$\frac{\begin{vmatrix} -7n + 42 = -140 \\ -7n = -182 \\ n = 26 \end{vmatrix}}{(2.3)} \sqrt{-7n + 42 = -140} \\ \sqrt{n = 26} \\ (3)$ $\frac{2.3}{n = 26} \sqrt{n = 26} \\ (3)$ $\frac{2.3}{s_n = \frac{n}{2}(a+1)} \text{ ORVOF } s_n - \frac{n}{2}[2a + (n-1)a] \\ s_n = \frac{n}{2}(35 - 7n + 42) \\ s_n = \frac{n}{2}(35 - 7n + 42) \\ s_n = \frac{n}{2}(70 - 7n + 7) \\ s_n = \frac{n}{2}(70 - 7n + $	2.2	T = -7n + 42	$\sqrt{T} = -7n + 42$	Cari	1	4 7	
$\frac{1}{2^{.3}} = \frac{1}{2} \frac{1}{$				(ÉcoleBo		$S_{n} = \frac{a(1-r^{-})}{r} = 5,8125$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			- 7/1 42 - 140			1-r	
$\begin{bmatrix} 2.3 \\ S_n = \frac{n}{2}(a+1) & \text{OR/OF} S_n - \frac{n}{2}[2a+(n-1)d] \\ S_n = \frac{n}{2}(35-7n+42) & S_n - \frac{n}{2}(70-7n+7) \\ S_n = \frac{n}{2}(-7n+77) & S_n - \frac{n}{2}(70-7n+7) \\ S_n = -\frac{7}{2}n^2 + \frac{77}{2}n & \\ -\frac{7}{2}n^2 + \frac{77}{2}n = 3n^2 - 8n+7 \\ 13n^2 - 93n+14 - 0 & \\ (n-7)(13n-2) - 0 & \\ n=7 or n = \frac{2}{13} & \\ NA & \\ \therefore n = 7 & & \text{NA} & \\ (n = 7) & \text{OR/OF} S_n - \frac{n}{2}(35-7n+42) \text{ or} \\ S_n = \frac{n}{2}(5-7n+42) & \text{or} \\ S_n = \frac{n}{2}(5-7n+42) & \text{or} \\ S_n = \frac{n}{2}(70-7n+7) & \\ S_n = \frac{n}{2}(70$			$\sqrt{n} = 26$			E	1
$\begin{bmatrix} 2.3 \\ S_n = \frac{n}{2}(a+1) & \text{OR/OF} S_n - \frac{n}{2}[2a+(n-1)d] \\ S_n = \frac{n}{2}(35-7n+42) & S_n - \frac{n}{2}(70-7n+7) \\ S_n = \frac{n}{2}(-7n+77) & S_n - \frac{n}{2}(70-7n+7) \\ S_n = -\frac{7}{2}n^2 + \frac{77}{2}n & \\ -\frac{7}{2}n^2 + \frac{77}{2}n = 3n^2 - 8n+7 \\ 13n^2 - 93n+14 - 0 & \\ (n-7)(13n-2) - 0 & \\ n=7 or n = \frac{2}{13} & \\ NA & \\ \therefore n = 7 & & \text{NA} & \\ (n = 7) & \text{OR/OF} S_n - \frac{n}{2}(35-7n+42) \text{ or} \\ S_n = \frac{n}{2}(5-7n+42) & \text{or} \\ S_n = \frac{n}{2}(5-7n+42) & \text{or} \\ S_n = \frac{n}{2}(70-7n+7) & \\ S_n = \frac{n}{2}(70$						$3_{1-}(1)^{*}$	$\sqrt{r-\frac{1}{2}}$
$S_{n} = \frac{n}{2}(35 - 7n + 42) \qquad S_{n} = \frac{n}{2}(70 - 7n + 7) \qquad (7 - 3n + 42) \text{ de}$ $S_{n} = \frac{n}{2}(-7n + 77) \qquad (5 - n + 7) \qquad (5 - n + 7) \qquad (5 - n + 42) \text{ de}$ $S_{n} = \frac{n}{2}(-7n + 77) \qquad (5 - n + 7) \qquad (5 -$	2.3	$S = {n \choose i} (z + 1)$ or $(z - 1) (z $		1		(2)	-
$S_{n} = \frac{n}{2}(35 - 7n + 42) \qquad S_{n} = \frac{n}{2}(70 - 7n + 7) \qquad (7 - 3n + 42) \text{ de}$ $S_{n} = \frac{n}{2}(-7n + 77) \qquad (5 - n + 7) \qquad (5 - n + 7) \qquad (5 - n + 42) \text{ de}$ $S_{n} = \frac{n}{2}(-7n + 77) \qquad (5 - n + 7) \qquad (5 -$		$S_n = \frac{1}{2}(a+1)$ OROF $S_n = \frac{1}{2}[2a+(n-1)a]$, 1 5,8125	
$S_{n} = -\frac{7}{2}n^{2} + \frac{77}{2}n$ $-\frac{7}{2}n^{2} + \frac{77}{2}n = 3n^{2} - 8n + 7$ $\frac{\sqrt{3} \text{ simplification of } S_{n}}{\sqrt{2} \text{ equating}}$ $\frac{\sqrt{3} \text{ simplification } \sqrt{3} simpl$		$n_{(25, 7, 142)}$ $n_{(72, 7, 7)}$	$\sqrt{S_{1}} = \frac{n}{(35 - 7n + 42)}$ or			1-2	
$S_{n} = -\frac{7}{2}n^{2} + \frac{77}{2}n$ $-\frac{7}{2}n^{2} + \frac{77}{2}n = 3n^{2} - 8n + 7$ $\frac{\sqrt{3} \text{ simplification of } S_{n}}{\sqrt{2} \text{ equating}}$ $\frac{\sqrt{3} \text{ simplification } \sqrt{3} simpl$		$S_n = \frac{1}{2}(55 - 7n + 42)$ $S_n = \frac{1}{2}(70 - 7n + 7)$	2 ([(1)"]	
$S_{n} = -\frac{7}{2}n^{2} + \frac{77}{2}n$ $-\frac{7}{2}n^{2} + \frac{77}{2}n = 3n^{2} - 8n + 7$ $\frac{\sqrt{3} \text{ simplification of } S_{n}}{\sqrt{2} \text{ equating}}$ $\frac{\sqrt{3} \text{ simplification } \sqrt{3} simpl$		c ⁿ ($S_{-} = \frac{n}{(70 - 7n + 7)}$			6 1- 2 =5,8125	
$S_{n} = -\frac{7}{2}n^{2} + \frac{77}{2}n$ $-\frac{7}{2}n^{2} + \frac{77}{2}n = 3n^{2} - 8n + 7$ $\frac{\sqrt{3} \text{ simplification of } S_{n}}{\sqrt{2} \text{ equating}}$ $\frac{\sqrt{3} \text{ simplification } \sqrt{3} simpl$		$S_n = \frac{1}{2}(-(n+1))$	" 2				
$ \begin{array}{c c} -\frac{7}{2}n^2 + \frac{77}{2}n = 3n^2 - 8n + 7 \\ 13n^2 - 93n + 14 = 0 \\ (n - 7)(13n - 2) = 0 \\ n = 7 or n = \frac{2}{13} \\ NA \\ \therefore n = 7 \end{array} \qquad \qquad$						(1)" 1	
$ \begin{array}{c c} -\frac{7}{2}n^2 + \frac{77}{2}n = 3n^2 - 8n + 7 \\ 13n^2 - 93n + 14 = 0 \\ (n - 7)(13n - 2) = 0 \\ n = 7 or n = \frac{2}{13} \\ NA \\ \therefore n = 7 \end{array} \qquad \qquad$		$S_n = -\frac{n}{2}n^n + \frac{n}{2}n^n$	√simplification of S.			$\left(\frac{1}{2}\right) = \frac{1}{32} = 0.03125$	✓ simplification
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7 7. 77	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-\frac{1}{2}n^{*} + \frac{1}{2}n = 3n^{*} - 8n + 7$	-4			$2^{-n} = 2^{-3}$ or $n \log \frac{1}{2} = \log \frac{1}{22}$	
$(n-7)(13n-2) = 0$ $n = 7 \text{ or } n = \frac{2}{13}$ NA $\therefore n = 7$ (4) (4) (4) (5) (5) (6)		$13n^2 - 93n + 14 = 0$	√ standard form				√answer
$n = 7 \text{ or } n = \frac{2}{13}$ NA NA NA Selection (6)			√ factors			n-5 n-5	(4)
NA selection (6) $\therefore n = 7$							
NA selection (6) $\therefore n = 7$		$n = 7$ or $n = \frac{2}{13}$	(
∴n=7 (0)	1						
			selection (0)				
			[16]	1			

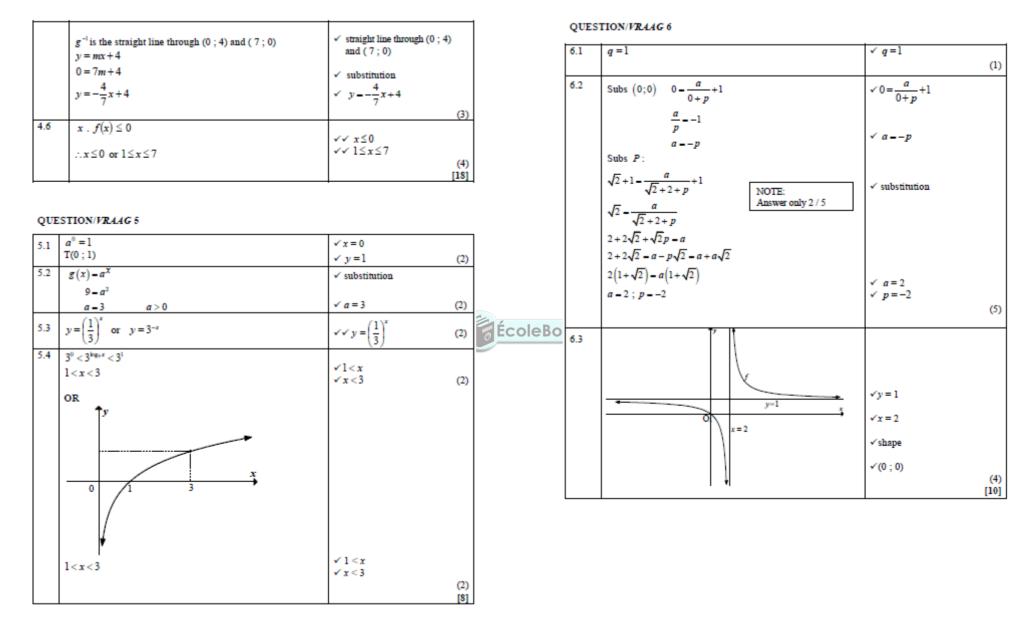
EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020


ÉcoleBo

·	ION/VRAAG 3	1
3.1	$\sum_{y=3}^{10} \frac{1}{y-2} - \sum_{y=3}^{10} \frac{1}{y-1}$	
	$= \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{8}\right) - \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{8} + \frac{1}{9}\right)$	$\checkmark \left(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{8}\right)$
	$=1-\frac{1}{9}$	$\sqrt{\left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{8} + \frac{1}{9}\right)}$
	$=\frac{8}{9}$	√answer (3
3.2	$\left(\frac{1}{3} \times \frac{2}{3}\right) + \left(\frac{2}{3} \times \frac{2}{3}\right) + \left(1 \times \frac{2}{3}\right) + \dots + \left(4 \times \frac{2}{3}\right)$	
	$-\frac{2}{9}+\frac{4}{9}+\frac{2}{3}++\frac{8}{3}$	√√a
	$a = \frac{2}{9}$ and $d = \frac{2}{3} - \frac{4}{9} = \frac{2}{9}$	√d
	$S_n = \frac{n}{2} [2a + (n-1)d]$ OR $S_n = \frac{n}{2} (a+1)$	
	$S_{12} = \frac{12}{2} \left[2 \left(\frac{2}{9} \right) + (12 - 1) \frac{2}{9} \right]$ $S_{12} = \frac{12}{2} \left(\frac{2}{9} + \frac{8}{3} \right)$	✓ substitution into the correct formula
	$-\frac{52}{3}m^2$ $-\frac{52}{3}m^2$	✓ answer
	:. for both sides = $2 \times \frac{52}{3} - \frac{104}{3} - 34,67 \text{m}^2$	✓ answer for both sides
	OR/OF	OR/OF ✓✓ a
	$\frac{2}{9} \times (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12) \times 2$	√√ (1 + + 12) √ ×2
	- 34,67 m ²	√ answer (6) OR/OF
	OR/OF	√√ a
	$T_1 = \frac{2}{9} \times 12 = \frac{8}{3}$ $I = \frac{2}{9} \times 1 = \frac{2}{9}$	$\checkmark T_1 = \frac{8}{3} \checkmark I = \frac{2}{9}$
	$2S_{12} = 2\left(\frac{12}{2}\right)\left(\frac{8}{3} + \frac{2}{9}\right)$	✓ substitution into correct formula
	- 34,67 m ²	√ answer (6)
		[9

FUNCTIONS AND INVERSES

NOV 2017


EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020

Éco

QUESTION/VRAAG 5

$x - (-1)$ $x - (-1)$ $x - (-1)$ $D(2; -1)$ $g(x) - \frac{2}{x-2} - 1$ $x - D(2; -1)$ $g(x) - \frac{2}{x-2} - 1$ $x - D(2; -1)$ $x - 2x - 2 - 1$ $1 - \frac{2}{x-2} - 1$ $2x - 2x - 2 - 1$ $x - 2x - $	QUES	TION/VRAAG 5		
$y < -1 \text{ or } y > -1$ $QR OF$ $y \in (-\infty; -1) \text{ or } y \in (-1;\infty)$ $QR OF$ $R - \{-1\}$ (2) $f(x) = \log_3 x.$ $\log_5 t = 1$ $r = 3$ $1 - \frac{2}{t-2} - 1$ (2) $(2) - 1)$ $(2) - 1)$ $(2) - 1)$ $(2) - 1)$ $(2) - 1)$ $(2) - 1)$ $(2) - 1)$ (3) $(3$	5.1	$y \in \mathbb{R}; y \neq -1$		
$y < -1 \text{ or } y > -1$ $QR OF$ $y \in (-\infty; -1) \text{ or } y \in (-1;\infty)$ $QR OF$ $R - \{-1\}$ (2) $f(x) = \log_3 x.$ $\log_5 t = 1$ $r = 3$ $1 - \frac{2}{t-2} - 1$ (2) $(2) - 1)$ $(2) - 1)$ $(2) - 1)$ $(2) - 1)$ $(2) - 1)$ $(2) - 1)$ $(2) - 1)$ (3) $(3$		OR/OF		
OR/OF $y \in (-\infty; -1)$ or $y \in (-1; \infty)$ OR/OF $R - (-1)$ (2)5.2D(2; -1) $s(x) - \frac{2}{x-2} - 1$ (2)5.3 $f(x) = \log_{3} x$ $\log_{3} t = 1$ $t = 3$ OR/OF $t = 3$ $g(x) - \frac{2}{x-2} - 1$ $2 - \frac{2}{t-2} - 1$ $2 - \frac{2}{t-2} - 1$ (3)5.4 $x = \log_{3} y$ $y = 3^{x}$ $\sqrt{x \operatorname{correct}}$ substitution of A $\sqrt{x} t = 3$ (3)5.4 $x = \log_{3} y$ $y = 3^{x}$ $\sqrt{x \operatorname{correct}}$ substitution of A $\sqrt{x} t = 3$ (3)5.5 $3^{x} < 3^{1}$ $x < 1$ OR/OF $3^{x} < 3^{1}$ $x \in (-\infty; 1)$ $\sqrt{3^{x}} < 3^{1}$ $\sqrt{x} < (2)$ (2)5.6Equation of the axis of symmetry: $y = -x+1$ x -intercept of the axis of symmetry is at $x = 1$ f has an x-intercept at B(1; 0)(2)5.6Equation of the axis of symmetry: $y = -x+1$ x -intercept of the axis of symmetry is -1, B will also lie on the axis of symmetry. But B also lies on f. Therefore B(1; 0) is the point of intersection between f and the gradient of the axis of symmetry is -1, B will also lie on the axis of symmetry. But B also lies on f. Therefore B(1; 0) is the point of intersection between f and the axis of symmetry with a negative gradient./ Omdar BE = ED = 1 and D lies on the axis of symmetry is -1, B will also lie on the axis of symmetry with a negative gradient./ Omdar BE = ED = 1 on D og die immetrie-axis den die simmetrie-axis et and the is and book og f. Dus is B(1; 0) die simmetrie-axis et and the gradient of the axis of og die simmetrie-axis et and the gradient of the axis of og die simmetrie-axis et and bie ook og f. Dus is B(1; 0) die simmetrie-axis et and the gradient./(3)			√√ answer	
$y \in (-\infty; -1)$ or $y \in (-1;\infty)$ $OR/OFR - (-1)(2)5.2D(2; -1)g(x) = \frac{2}{x-2} - 1t = 3x = D(2; -1)x = \frac{2}{x-2} - 12 = \frac{2}{t-2} - 12 = \frac$				
OR/OF $R - (-1)$ (2)5.2 $D(2; -1)$ $g(x) = \frac{2}{x-2} - 1(2)5.3f(x) = \log_3 x.\log_3 t = 1t = 3GR/OFg(x) = \frac{2}{x-2} - 12 - \frac{2}{t-2}(2)5.4x = \log_3 yy = 3^x(2)5.4x = \log_3 yy = 3^x(2)5.53^x < 3^1x < 1(2)5.6Equation of the axis of symmetry: y = -x+1x-intercept of the axis of symmetry: y = -x+1x-intercept of the axis of symmetry is at x = 1f has an x-intercept at B(1; 0)(2)5.6Equation of the axis of symmetry: y = -x+1x-intercept of the axis of symmetry is 1 - 1, Buillalso lie on the axis of symmetry. But B also lies on f.Therefore B(1; 0) is the point of intersection between fand the gradient of the axis of symmetry is 1 - 1, Buillalso lie on the axis of symmetry is 1 - 1, Buillalso lie on the axis of symmetry is 1 - 1, Buillalso lie on the axis of symmetry is 1 - 1, Buillalso lie on the axis of symmetry. But B also lies on f.Therefore B(1; 0) is the point of intersection between fand the axis of symmetry with a negative gradient./Omdat B = ED = 1 and D ise on the axis of symmetry is -1, Buillalso lie on the axis of symmetry with a negative gradient./Omdat B = ED = 1 on D of die immetrie-ax lie n diesimmetrie-ax is gradient 1, 1, 2, 3 also do givesimmetrie-ax is 2 and 1, 2 and 2 and 2 and 1 and 2 a$				
$R - \{-1\}$ (2)5.2 $D(2; -1)$ $g(x) - \frac{x}{x-2} - 1\checkmark D(2; -1)\checkmark \frac{x}{x-2} - 1\checkmark D(2; -1)\checkmark \frac{x}{x-2} - 15.3f(x) = \log_3 x\log_3 t = 1t = 3OR/OFt = 3g(x) - \frac{2}{x-2} - 12 - \frac{2}{t-2}2t - 4 = 2t = 3\checkmark correct substitution of A\checkmark \lor t = 35.4x = \log_3 yy = 3^x2 - \frac{2}{t-2}2t - 4 = 2t = 3\checkmark correct substitution of A\checkmark \lor t = 35.4x = \log_3 yy = 3^x2 - \frac{2}{t-2}2t - 4 = 2t = 3\checkmark interchange x and y\checkmark y = 3^x5.4x = \log_3 yy = 3^x\checkmark interchange x and y\checkmark y = 3^x(2)5.53^x < 3^1x < 1(3)OR/OF3^x < 3^1x < (-\infty; 1)(2)5.6Equation of the axis of symmetry: y = -x + 1x-intercept of the axis of symmetry is at x = 1f has an x-intercept at B(1; 0) which is the same as thex-intercept of the axis of symmetry. But B also lies on f.Therefore B(1; 0) is the point of intersection between fand the gradient of the axis of symmetry. Sut B also lies on f.Therefore B(1; 0) is the point of intersection between fand the axis of symmetry with a negative gradient./Omdat BE = ED = 1 en D og die simmetrie-as lie n diesimmetrie-as ie. Maar B lé ook og f. Dus is B(1; 0) diesimpunt van f en die simmetrie-as met negativegradient.(3)$				
5.2 $D(2; -1)$ $x > D(2; -1)$ $g(x) - \frac{2}{x-2} - 1$ $x > D(2; -1)$ $\frac{2}{x-2} - 1$ $\frac{2}{x-2} - 1$ 5.3 $f(x) = \log_3 x$. $\log_3 t = 1$ OR/OF $g(x) - \frac{2}{x-2} - 1$ $\frac{2}{x-2} - 1$ $t = 3$ $1 - \frac{2}{t-2} - 1$ $2 - \frac{2}{t-2}$ (3) $1 - \frac{2}{t-2} - 1$ $2 - \frac{2}{t-2}$ (3) 5.4 $x = \log_3 y$ $y = 3^x$ $(x + 3)$ 5.5 $3^x < 3^1$ $(x < 1)$ (2) 5.5 $3^x < 3^1$ $(x < 1)$ (2) 5.6 Equation of the axis of symmetry: $y = -x + 1$ $(x < 2^{-1})$ (2) 5.6 Equation of the axis of symmetry: $y = -x + 1$ $(x < 2^{-1})$ (2) 5.6 Equation of the axis of symmetry: $y = -x + 1$ $(x < 2^{-1})$ (2) 5.6 Equation of the axis of symmetry: $y = -x + 1$ $(x < 2^{-1})$ (2) 5.6 Equation of the axis of symmetry: $y = -x + 1$ $(x < 2^{-1})$ (2) 5.6 Equation of the axis of symmetry: $y = -x + 1$ $(x < 1)$ (2) $x < 1$ (2) (3) (2) (3) <				(2)
$\begin{aligned} g(x) - \frac{2}{x-2} - 1 & (2) \\ \hline g(x) - \frac{2}{x-2} - 1 & (2) \\ \hline g(x) = \log_3 x \\ \log_3 t = 1 & OR/OF & g(x) - \frac{2}{x-2} - 1 \\ t = 3 & 1 - \frac{2}{t-2} - 1 \\ 2 - \frac{2}{t-2} $	5.2		(D(2, 1))	
5.3 $f(x) = \log_{g} x.$ $\log_{g} t = 1$ $t = 3$ $1 - \frac{2}{x - 2} - 1$ $2 - \frac{2}{t - 2}$ $2t - 4 = 2$ $t = 3$ $x = \log_{g} y$ $y = 3^{x}$ $x = \log_{g} y$ $y = 3^{x}$ $x < 1$ OR/OF $3^{x} < 3^{1}$ $x < (-\infty; 1)$ 5.6 Equation of the axis of symmetry: $y = -x + 1$ x -intercept of the axis of symmetry is at $x = 1$ f has an <i>x</i> -intercept at B(1; 0) which is the same as the <i>x</i> -intercept at B(1; 0) which is the same as the <i>x</i> -intercept of the axis of symmetry is -1, B will also lie on the axis of symmetry with a negative gradient. Order BE = ED = 1 en D op die interventi and the axis of symmetry and the gradient -1 is, call B ook op				
5.3 $f(x) = \log_{g} x.$ $\log_{g} t = 1$ $t = 3$ $1 - \frac{2}{x - 2} - 1$ $2 - \frac{2}{t - 2}$ $2t - 4 = 2$ $t = 3$ $x = \log_{g} y$ $y = 3^{x}$ $x = \log_{g} y$ $y = 3^{x}$ $x < 1$ OR/OF $3^{x} < 3^{1}$ $x < (-\infty; 1)$ 5.6 Equation of the axis of symmetry: $y = -x + 1$ x -intercept of the axis of symmetry is at $x = 1$ f has an <i>x</i> -intercept at B(1; 0) which is the same as the <i>x</i> -intercept at B(1; 0) which is the same as the <i>x</i> -intercept of the axis of symmetry is -1, B will also lie on the axis of symmetry with a negative gradient. Order BE = ED = 1 en D op die interventi and the axis of symmetry and the gradient -1 is, call B ook op		$g(x) = \frac{2}{-1}$	< <u>2</u> -1	(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		x-2	x - 2	
$ \begin{array}{c} \log_{1} t = 1 \\ t = 3 \end{array} \qquad \qquad$	5.3	$f(x) = \log_3 x.$		
$t=3$ $1-\frac{2}{t-2}-1$ $2-\frac{2}{t-2}-1$ $2-\frac{2}{t-2}$ $2t-4=2$ $t=3$ (3) $\frac{1-\frac{2}{t-2}-1}{2}$ $2t-4=2$ $t=3$ (2) $\frac{1}{2} + \frac{1}{2} $		$\log_3 t = 1$ OR/OF $g(x) = \frac{2}{1} - 1$		A
$1 - \frac{2}{t-2} - 1$ $2 - \frac{2}{t-2}$ $2t - 4 = 2$ $t = 3$ $2t - 4 = 2$ (2) $y = 3^{x}$ (2) (2) (2) (2) (2) (3)			v v 1 = 5	0
$2 - \frac{2}{t-2}$ $2t-4 = 2$ $t=3$ (2) $2t-4 = 2$ $t=3$ (2) $2t-4 = 2$ $t=3$ (2) (2) $y = 3^{x}$ (2) (2) (2) (3) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (2) (2) (2) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (2) (2) (2) (2) (3) (2) (3) (3) (3) (3) (3) (2) (3) (2) (3) (3) (3) (3) $(1, 0)$ (3) (3) $(1, 0)$ $(1, 0)$ (3) (3) $(1, 0)$ (3) (1) (2) (1) (2) (1) (2) (3) (1) (2) (1) (2) (3) (3) (3) (1) (3) (1) (3) (1) (1) (2) (1) (2) (1) (2) (3) (3) (3) (1) (3) (1) (3) (1) (1) (2) (1) (3) (1) (3) (1) (1) (2) (1) (3) (1) (3) (1) (1) (2) (1) (3) (1) (3) (1) (1) (2) (1) (2) (1) (2) (3) (3) (3) (1) (3) (1) (3) (1) (1) (1) (1) (1) (2) (1) (2) (3) (3) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (3) (3) (3) (1) (2) (3)				(3)
$2 - \frac{2}{t-2}$ $2t-4 = 2$ $t=3$ (2) $2t-4 = 2$ $t=3$ (2) $2t-4 = 2$ $t=3$ (2) (2) $y = 3^{x}$ (2) (2) (2) (3) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (2) (2) (2) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (2) (2) (2) (2) (3) (2) (3) (3) (3) (3) (3) (2) (3) (2) (3) (3) (3) (3) $(1, 0)$ (3) (3) $(1, 0)$ $(1, 0)$ (3) (3) $(1, 0)$ (3) (1) (2) (1) (2) (1) (2) (3) (1) (2) (1) (2) (3) (3) (3) (1) (3) (1) (3) (1) (1) (2) (1) (2) (1) (2) (3) (3) (3) (1) (3) (1) (3) (1) (1) (2) (1) (3) (1) (3) (1) (1) (2) (1) (3) (1) (3) (1) (1) (2) (1) (3) (1) (3) (1) (1) (2) (1) (2) (1) (2) (3) (3) (3) (1) (3) (1) (3) (1) (1) (1) (1) (1) (2) (1) (2) (3) (3) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (3) (3) (3) (1) (2) (3)		$1 - \frac{1}{t-2} - 1$		
$\frac{2t-4=2}{t=3}$ 5.4 $x = \log_3 y$ $y=3^x$ (2) 5.5 $3^x < 3^1$ $x < 1$ (2) OR/OF $3^x < 3^1$ $x \in (-\infty; 1)$ (2) 5.6 Equation of the axis of symmetry: $y = -x+1$ x-intercept of the axis of symmetry: $y = -x+1x$ -intercept of the axis of symmetry is at $x = 1f$ has an x -intercept at B(1; 0) which is the same as the x-intercept of the axis of symmetry Point of intersection: B (1; 0) OR/OF Since BE = ED = 1 and D lies on the axis of symmetry and the gradient of the axis of symmetry is -1 , B will also lie on the axis of symmetry is -1 , B will also lie on the axis of symmetry is -1 , B will also lie on the axis of symmetry is -1 , B will also he on the axis of symmetry is -1 , B will also he on the axis of symmetry is -1 , B will also he axis of symmetry with a negative gradient./ Omdat BE = ED = 1 on D op die simmetrie-as lé on die simmetrie-as lé. Maar B lé ook op f. Dus is B(1; 0) die snypunt van f on die simmetrie-as met negativee gradient. (3)				
$\frac{2t-4=2}{t=3}$ 5.4 $x = \log_3 y$ $y=3^x$ (2) 5.5 $3^x < 3^1$ $x < 1$ (2) OR/OF $3^x < 3^1$ $x \in (-\infty; 1)$ (2) 5.6 Equation of the axis of symmetry: $y = -x+1$ x-intercept of the axis of symmetry: $y = -x+1x$ -intercept of the axis of symmetry is at $x = 1f$ has an x -intercept at B(1; 0) which is the same as the x-intercept of the axis of symmetry Point of intersection: B (1; 0) OR/OF Since BE = ED = 1 and D lies on the axis of symmetry and the gradient of the axis of symmetry is -1 , B will also lie on the axis of symmetry is -1 , B will also lie on the axis of symmetry is -1 , B will also lie on the axis of symmetry is -1 , B will also he on the axis of symmetry is -1 , B will also he on the axis of symmetry is -1 , B will also he axis of symmetry with a negative gradient./ Omdat BE = ED = 1 on D op die simmetrie-as lé on die simmetrie-as lé. Maar B lé ook op f. Dus is B(1; 0) die snypunt van f on die simmetrie-as met negativee gradient. (3)		2		
5.4 $x = \log_3 y$ \checkmark interchange x and y $y = 3^x$ $\checkmark y = 3^x$ (2) 5.5 $3^x < 3^1$ $\checkmark 3^x < 3^1$ $x < 1$ (2) OR/OF $\checkmark x < (-\infty; 1)$ (2) 5.6 Equation of the axis of symmetry: $y = -x + 1$ $\checkmark x \in (-\infty; 1)$ (2) 5.6 Equation of the axis of symmetry: $y = -x + 1$ $\checkmark x \in (-\infty; 1)$ (2) 5.6 Equation of the axis of symmetry is at $x = 1$ f has an x-intercept at B(1; 0) which is the same as the x-intercept of the axis of symmetry $\checkmark x \in (-\infty; 1)$ (2) 5.6 Equation of the axis of symmetry: $y = -x + 1$ $\checkmark w \in (-\infty; 1)$ (2) 5.6 Equation of the axis of symmetry: $y = -x + 1$ $\checkmark w \in (-\infty; 1)$ (2) 5.6 Equation of the axis of symmetry: $y = -x + 1$ $\checkmark w \in (-\infty; 1)$ (2) 7 $\gamma = 0$ $\psi = 0$ $\psi = 0$ $\psi = 0$ 7 $\psi = 0$ $\psi = 0$ $\psi = 0$ $\psi = 0$ 0 $W = 0$ $\psi = 0$ $\psi = 0$ $\psi = 0$ 0 $W = 0$ $\psi = 0$ $\psi = 0$ $\psi = 0$ 0 $W = 0$ <td< td=""><td></td><td>2 - 4 = 2</td><td></td><td></td></td<>		2 - 4 = 2		
5.4 $x = \log_3 y$ \checkmark interchange x and y $y = 3^x$ $\checkmark y = 3^x$ (2) 5.5 $3^x < 3^1$ $\checkmark x < 1$ OR/OF $3^x < 3^1$ $\checkmark x < 1$ OR/OF $3^x < 3^1$ $\checkmark x < 1$ OR/OF $3^x < 3^1$ $\checkmark x < 1$ $x \in (-\infty; 1)$ 5.6 Equation of the axis of symmetry: $y = -x + 1$ $x \in (-\infty; 1)$ 5.6 Equation of the axis of symmetry: $y = -x + 1$ $x \in (-\infty; 1)$ 5.6 Equation of the axis of symmetry: $y = -x + 1$ $x \in (-\infty; 1)$ 5.6 Equation of the axis of symmetry: $y = -x + 1$ $x \in (-\infty; 1)$ 5.6 Equation of the axis of symmetry: $y = -x + 1$ $x \in (-\infty; 1)$ 5.6 Equation of the axis of symmetry 5.6 Since BE = ED = 1 and D lies on the axis of symmetry				
1.1	5.4		\checkmark interchange x and y	
$y=3$ $x < 1$ $x < 1$ $x < 1$ OR/OF $3^x < 3^1$ $x \in (-\infty; 1)$ $y = -x + 1$ $x < 1$ (2) 5.6Equation of the axis of symmetry: $y = -x + 1$ x -intercept of the axis of symmetry is at $x = 1$ f has an x-intercept at $B(1; 0)$ which is the same as the x -intercept of the axis of symmetry Point of intersection: $B(1; 0)$ $\forall x \in (-\infty; 1)$ (2) 5.6Equation of the axis of symmetry: $y = -x + 1$ x -intercept of the axis of symmetry Point of intersection: $B(1; 0)$ $\forall x \in (-\infty; 1)$ (2) f has an x-intercept at $B(1; 0)$ which is the same as the x-intercept of the axis of symmetry Point of intersection: $B(1; 0)$ $\forall B \text{ or } (1; 0)$ OR/OF Since $BE = ED = 1$ and D lies on the axis of symmetry and the gradient of the axis of symmetry. But B also lies on f . Therefore $B(1; 0)$ is the point of intersection between f and the axis of symmetry with a negative gradient./ Omdat $BE = ED = 1$ on D op die simmetrie-as $l\delta$ en die simmetrie-as $l\delta$. Maar $B l\delta$ ook op f . Dus is $B(1; 0)$ die snypunt van f en die simmetrie-as met negative gradient. (3)				α
$x < 1$ $\checkmark x < 1$ OR/OF $3^x < 3^1$ $x \in (-\infty; 1)$ $3^x < 3^1$ $x \in (-\infty; 1)$ $\checkmark x \in (-\infty; 1)$ 5.6Equation of the axis of symmetry: $y = -x + 1$ $x \in (-\infty; 1)$ x -intercept of the axis of symmetry is at $x = 1$ f has an x-intercept at $B(1; 0)$ which is the same as the x-intercept of the axis of symmetry $\checkmark w \in (-\infty; 1)$ f has an x-intercept at $B(1; 0)$ which is the same as the x-intercept of the axis of symmetry Point of intersection: $B(1; 0)$ $\lor W$ or $(1; 0)$ OR/OF Since $BE = ED = 1$ and D lies on the axis of symmetry and the gradient of the axis of symmetry. But B also lies on f . Therefore $B(1; 0)$ is the point of intersection between f and the axis of symmetry with a negative gradient./ $Omdat BE = ED = 1$ and D give simmetrie-as 16 and the simmetrie-as 16 . Maar B 16 ook op f. Dus is $B(1; 0)$ die simmetrie-as 16 . Maar B 16 ook op f. Dus is $B(1; 0)$ die simmetrie-as 16 . Maar B 16 ook op f. Dus is $B(1; 0)$ die simmetrie-as 16 . Maar B 16 ook op f. Dus is $B(1; 0)$ die simmetrie-as 16 . Maar B 16 ook op f. Dus is $B(1; 0)$ die simmetrie-as 16 .(3)		$y = 3^x$		(2)
$x < 1$ (2) OR/OF $3^x < 3^1$ $x \in (-\infty; 1)$ 5.6 Equation of the axis of symmetry: $y = -x + 1$ $x < x \in (-\infty; 1)$ f has an x-intercept of the axis of symmetry is at $x = 1$ f has an x-intercept at $B(1; 0)$ which is the same as the x-intercept of the axis of symmetry $\vee Y = equation of axis of symmetryPoint of intersection: B (1; 0)\vee Y = equation of axis of symmetry\vee Y = equation of axis of symmetryBoint of intersection: B (1; 0)\vee Y = equation of axis of symmetry\vee Y = equation of axis of symmetryad the gradient of the axis of symmetry is -1, B will also lie on the axis of symmetry. But B also lies on f.Therefore B(1; 0) is the point of intersection between fand the axis of symmetry with a negative gradient.Omdat BE = ED = 1 on D op die simmetrie-as lé en die simmetrie-as lé. Maar B lé ook op f. Dus is B(1; 0) die simmetrie-as lé. Maar B lé ook op f. Dus is B(1; 0) die simmetrie-as lé.(3)(3)$	5.5	3 ^x < 3 ¹	√ 3 ^x < 3 ¹	
OR/OF $3^x < 3^1$ $x \in (-\infty; 1)$ $\checkmark 3^x < 3^1$ $x \in (-\infty; 1)$ 5.6Equation of the axis of symmetry: $y = -x + 1$ x-intercept of the axis of symmetry is at $x = 1$ f has an x-intercept at B(1; 0) which is the same as the x-intercept of the axis of symmetry Point of intersection: B (1; 0) $\checkmark \checkmark$ equation of axis of symmetry \checkmark B or (1; 0)OR/OF Since BE = ED = 1 and D lies on the axis of symmetry and the gradient of the axis of symmetry is -1, B will also lie on the axis of symmetry. But B also lies on f. Therefore B(1; 0) is the point of intersection between f and the axis of symmetry with a negative gradient./ Omdat BE = ED = 1 on D op die simmetrie-as lé on die simmetrie-as lé. Maar B lé ook op f. Dus is B(1; 0) die snypunt van f on die simmetrie-as met negative gradient. \lor B or (1; 0)(3)		x<1	✓ x <1	
$3^x < 3^i$ $x \in (-\infty; 1)$ $x < (-\infty; 1)$ (2) 5.6 Equation of the axis of symmetry: $y = -x + 1$ $x < (-\infty; 1)$ (2) 5.6 Equation of the axis of symmetry is at $x = 1$ f $x = (-\infty; 1)$ (2) 5.6 Equation of the axis of symmetry is at $x = 1$ f $x = (-\infty; 1)$ (2) 5.6 Equation of the axis of symmetry is at $x = 1$ f $x = (-\infty; 1)$ (2) f has an x -intercept at $B(1; 0)$ which is the same as the x -intercept of the axis of symmetry $y = -x + 1$ $x = (-\infty; 1)$ (2) f has an x -intercept at $B(1; 0)$ which is the same as the x -intercept of the axis of symmetry $y = -x + 1$ $y = (-\infty; 1)$ (2) f has an x -intercept at $B(1; 0)$ which is the same as the x -intercept of the axis of symmetry $y = -x + 1$ $y = (-\infty; 1)$ $y = (1; 0)$ OR/OF Since $BE = ED = 1$ and D lies on the axis of symmetry is -1 , B will also lies on f . $Y = B = ED = 1$ $y = B = ED = 1$ $Therefore B(1; 0) is the point of intersection between f and the axis of symmetry with a negative gradient. Y = B = C = 1 y = B = C = 1 Omdat BE = ED = 1 on D op die simmetrie-as 16 on die simmetrie-as 16. Maar B 16 ook op f. Du = is B(1; 0) die simmetri$				(2)
5.6 Equation of the axis of symmetry: $y = -x + 1$ x-intercept of the axis of symmetry is at $x = 1$ f has an x-intercept at B(1; 0) which is the same as the x-intercept of the axis of symmetry Point of intersection: B (1; 0) OR/OF Since BE = ED = 1 and D lies on the axis of symmetry and the gradient of the axis of symmetry. But B also lies on f. Therefore B(1; 0) is the point of intersection between f and the axis of symmetry with a negative gradient./ Omdat BE = ED = 1 en D op die simmetrie-as lê en die simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die gradient. (3)			(37. (3)	
5.6 Equation of the axis of symmetry: $y = -x + 1$ (2) 5.6 Equation of the axis of symmetry is at $x = 1$ /* f has an x-intercept of the axis of symmetry Form of intersection: B (1; 0) /* OR/OF Since BE = ED = 1 and D lies on the axis of symmetry > ald be gradient of the axis of symmetry. B or (1; 0) OR/OF Since BE = ED = 1 and D lies on the axis of symmetry and the gradient of the axis of symmetry. But B also lies on f. OR/OF Therefore B(1; 0) is the point of intersection between f and the axis of symmetry with a negative gradient./ Omdat BE = ED = 1 on D op die simmetrie-as lê en die simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die simmetrie-as lê. (3)				
 5.6 Equation of the axis of symmetry: y = -x + 1 x-intercept of the axis of symmetry is at x = 1 f has an x-intercept at B(1; 0) which is the same as the x-intercept of the axis of symmetry Point of intersection: B (1; 0) OR/OF Since BE = ED = 1 and D lies on the axis of symmetry and the gradient of the axis of symmetry. But B also lies on f. Therefore B(1; 0) is the point of intersection between f and the axis of symmetry with a negative gradient./ Omdat BE = ED = 1 en D op die simmetrie-as lê en die simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die snypunt van f en die simmetrie-as met negatiewe gradient. (3) 		$x \in (-\infty; 1)$	$\checkmark x \in (-\infty; 1)$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Therefore B(1; 0) and the axis of symmetry Point of intersection: B (1; 0) OR/OF Since BE = ED = 1 and D lies on the axis of symmetry and the gradient of the axis of symmetry is -1, B will also lie on the axis of symmetry. But B also lies on f. Therefore B(1; 0) is the point of intersection between f and the axis of symmetry with a negative gradient./ Omdat BE = ED = 1 en D op die simmetrie-as lê en die simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die snypunt van f en die simmetrie-as met negative gradient. (3)	5.0	Equation of the axis of symmetry: $y = -x + 1$	 ✓ ✓ equation of axis of 	
x-intercept of the axis of symmetry Point of intersection: B $(1; 0)$ OR/OF Since BE = ED = 1 and D lies on the axis of symmetry and the gradient of the axis of symmetry is -1, B will also lie on the axis of symmetry. But B also lies on f. Therefore B(1; 0) is the point of intersection between f and the axis of symmetry with a negative gradient./ Omdat BE = ED = 1 en D op die simmetrie-as lê en die simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die snypunt van f en die simmetrie-as met negatiewe gradient. (3)		x-intercept of the axis of symmetry is at $x = 1$	symmetry	
x-intercept of the axis of symmetry Point of intersection: B $(1; 0)$ OR/OF Since BE = ED = 1 and D lies on the axis of symmetry and the gradient of the axis of symmetry is -1, B will also lie on the axis of symmetry. But B also lies on f. Therefore B(1; 0) is the point of intersection between f and the axis of symmetry with a negative gradient./ Omdat BE = ED = 1 en D op die simmetrie-as lê en die simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die snypunt van f en die simmetrie-as met negatiewe gradient. (3)				
Point of intersection: B $(1; 0)$ OR/OF Since BE = ED = 1 and D lies on the axis of symmetry and the gradient of the axis of symmetry is -1, B will also lie on the axis of symmetry. But B also lies on f. Therefore B(1; 0) is the point of intersection between f and the axis of symmetry with a negative gradient./ Omdat BE = ED = 1 en D op die simmetrie-as lê en die simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die snypunt van f en die simmetrie-as met negative gradient. (3)				
OR/OF Since BE = ED = 1 and D lies on the axis of symmetry and the gradient of the axis of symmetry is -1 , B will also lie on the axis of symmetry. But B also lies on f. Therefore B(1; 0) is the point of intersection between f and the axis of symmetry with a negative gradient./ Omdat BE = ED = 1 en D op die simmetrie-as lê en die simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die snypunt van f en die simmetrie-as met negatiewe gradient. (3)		-	(P or (1 · 0)	
Since $BE = ED = 1$ and D lies on the axis of symmetry and the gradient of the axis of symmetry is -1 , B will also lie on the axis of symmetry. But B also lies on f. Therefore B(1; 0) is the point of intersection between f and the axis of symmetry with a negative gradient./ Omdat $BE = ED = 1$ en D op die simmetrie-as lê en die simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die snypunt van f en die simmetrie-as met negative gradient. (3)		Four of mersection. D (1, 0)	* B OF (1; 0)	
Since $BE = ED = 1$ and D lies on the axis of symmetry and the gradient of the axis of symmetry is -1 , B will also lie on the axis of symmetry. But B also lies on f. Therefore B(1; 0) is the point of intersection between f and the axis of symmetry with a negative gradient./ Omdat $BE = ED = 1$ en D op die simmetrie-as lê en die simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die snypunt van f en die simmetrie-as met negative gradient. (3)		OR/OF		
and the gradient of the axis of symmetry is -1 , B will also lie on the axis of symmetry. But B also lies on f. Therefore B(1; 0) is the point of intersection between f and the axis of symmetry with a negative gradient./ Omdat BE = ED = 1 en D op die simmetrie-as lê en die simmetrie-as se gradiënt -1 is, sal B ook op die simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die snypunt van f en die simmetrie-as met negatiewe gradient. (3)			OR/OF	
also lie on the axis of symmetry. But B also lies on f. Therefore B(1; 0) is the point of intersection between f and the axis of symmetry with a negative gradient./ Omdat BE = ED = 1 en D op die simmetrie-as lê en die simmetrie-as ze gradient -1 is, sal B ook op die simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die snypunt van f en die simmetrie-as met negatiewe gradient. (3)				
Therefore B(1; 0) is the point of intersection between f and the axis of symmetry with a negative gradient./ Omdat BE = ED = 1 en D op die simmetrie-as lê en die simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die snypunt van f en die simmetrie-as met negatiewe gradient. (3)			$\checkmark \checkmark BE = ED = 1$	
and the axis of symmetry with a negative gradient./ Omdat BE = ED = 1 en D op die simmetrie-as lê en die simmetrie-as se gradient -1 is, sal B ook op die simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die snypunt van f en die simmetrie-as met negatiewe gradient. (3)				
Omdat BE = ED = 1 en D op die simmetrie-as lê en die simmetrie-as se gradiënt –1 is, sal B ook op die simmetrie-as lê. Maar B lê ook op f. Dus is B(1;0) die snypunt van fen die simmetrie-as met negatiewe gradient. (3)			(D (1 (1)))	
simmetrie-as se gradiënt –1 is, sal B ook op die simmetrie-as lê. Maar B lê ook op f. Dus is B(1;0) die snypunt van f en die simmetrie-as met negatiewe gradient. (3)			✓ B ог (1;0)	
simmetrie-as lê. Maar B lê ook op f. Dus is B(1;0) die snypunt van f en die simmetrie-as met negatiewe gradient. (3)				
snypunt van f en die simmetrie-as met negatiewe gradient. (3)				
gradiënt. (5)				
				(3)
		×		[14]

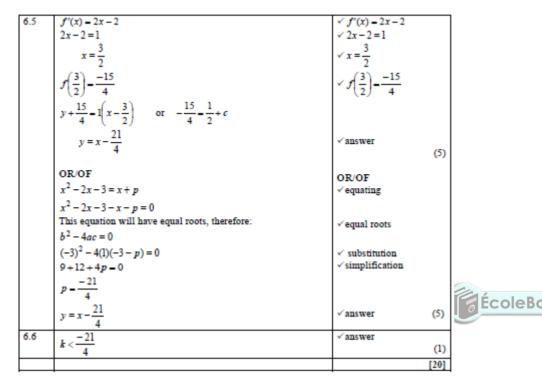
4.1	E(4;-9)	$\sqrt{x} = 4$
		✓ y = -9
		(2)
4.2	$f(x) = (x-4)^2 - 9$	
	$(x-4)^2 - 9 = 0$	$\checkmark y = 0$
	$(x-4)^2 = 9$	-
	$x - 4 = \pm 3$	$\sqrt{x-4} = \pm 3$
	x = 7 or $x = 1$	
	A(1;0)	✓ A(1;0)
	OR/OF	0R/0F
	01007	
	$f(x) = (x-4)^2 - 9$	
	$0 = x^2 - 8x + 16 - 9$	$\checkmark y = 0$
	$0 = x^2 - 8x + 7$	-
	(x-7)(x-1) = 0	(x-7)(x-1)
	x = 7 or $x = 1$	✓ A(1:0)
	A(1;0)	(3)
4.3	C(0;7) NOTE:	✓ C(0;7)
	M(8;7) Answer only 3 / 3	$\sqrt{x} = 8$
		$\sqrt{y} = 7$ (3)
30 4.4	C(0;7)	
	D(4;0)	✓ D(4;0)
	$m = \frac{7-0}{0-4}$ or $m = \frac{0-7}{4-0}$ or $0 = 4m + 7$	
	0-4 4-0	
	$m = -\frac{7}{4}$ $m = -\frac{7}{4}$ $m = -\frac{7}{4}$	$\sqrt{m} = -\frac{7}{4}$
	, , ,	4
	$y - 0 = -\frac{7}{4}(x - 4)$	
		$x = -\frac{7}{x+7}$
	$y = 0 = -\frac{1}{4}(x - 4)$ $y = -\frac{7}{4}x + 7$	$\checkmark y = -\frac{7}{4}x + 7$
	$y = -\frac{7}{4}x + 7$	$\sqrt{y} = -\frac{7}{4}x + 7$ (3)
4.5		7
4.5	$y = -\frac{7}{4}x + 7$ $g: y = -\frac{7}{4}x + 7$	7
4.5	$y = -\frac{7}{4}x + 7$ $g : y = -\frac{7}{4}x + 7$ $g^{-1} : x = -\frac{7}{4}y + 7$	(3)
4.5	$y = -\frac{7}{4}x + 7$ $g : y = -\frac{7}{4}x + 7$ $g^{-1} : x = -\frac{7}{4}y + 7$ $4x = -7y + 28$	(3) ✓ interchange x and y
4.5	$y = -\frac{7}{4}x + 7$ $g: y = -\frac{7}{4}x + 7$ $g^{-1}: x = -\frac{7}{4}y + 7$ $4x = -7y + 28$ $7y = -4x + 28$	(3) ✓ interchange x and y ✓ simplification
4.5	$y = -\frac{7}{4}x + 7$ $g: y = -\frac{7}{4}x + 7$ $g^{-1}: x = -\frac{7}{4}y + 7$ $4x = -7y + 28$ $7y = -4x + 28$	(3) ✓ interchange x and y
4.5	$y = -\frac{7}{4}x + 7$ $g : y = -\frac{7}{4}x + 7$ $g^{-1} : x = -\frac{7}{4}y + 7$ $4x = -7y + 28$	(3) ✓ interchange x and y ✓ simplification

46 | Page

EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020

Écol

NOV 2018

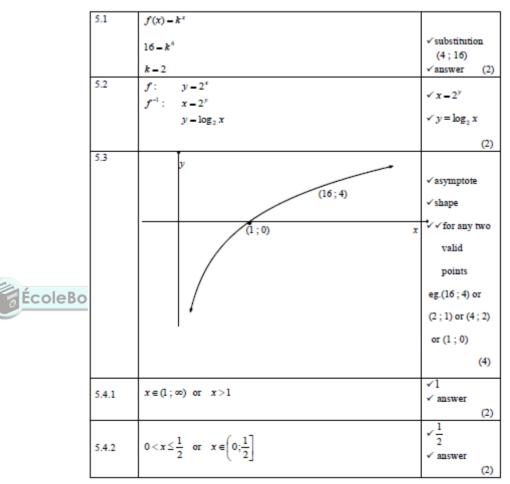

QUESTION/VRAAG 4

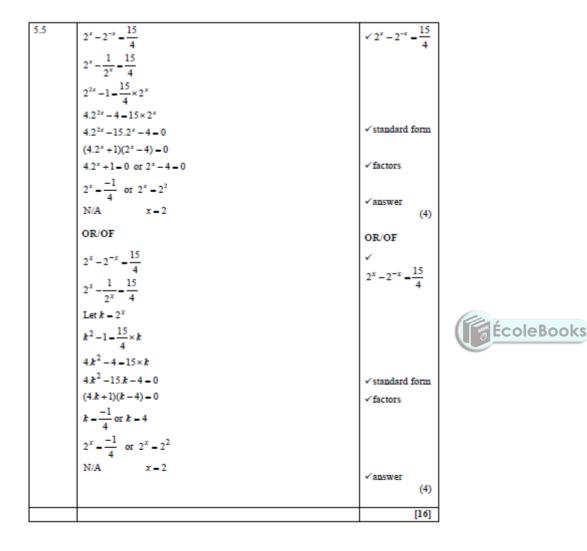
4.1	Yes	√answer	
	For every x-value there is only one corresponding y value	√reason	
	OR/OF		
	One to one mapping (vertical line test)		(2)
4.2	R(-12;-6)	√answer	(1)
4.3	$f(x) = ax^2$ substitute (-6; -12)		
	$-12 = a(-6)^2$	✓ substitution	
	$a = \frac{-1}{3}$	√answer	
	" 3		(2)
4.4	$f: y = -\left(\frac{1}{3}\right)x^2$		
	$f^{-1}: x = -\left(\frac{1}{3}\right)y^2$	\checkmark swapping x and y	
	$y^2 = -3x$	$\checkmark y^2 = -3x$ $\checkmark y = -\sqrt{-3x}$	
	$y = \pm \sqrt{-3x}$		
	Only $y = -\sqrt{-3x}$ and $x \le 0$	$\checkmark y = -\sqrt{-3x}$	
			(3)
			[8]

QUESTION/VRAAG 5

5.1	Domain: $x \in R$; $x \neq 1$	√answer	
	OR/OF		(1)
	$x \in (-\infty; 1) \cup (1; \infty)$		
5.2	x-1	√x = 1	
	y = 0	$\sqrt{y} = 0$	(2)
5.3	<i>y</i>	✓ y intercept	
		√vertical asymptote √shape	
			(3)
5.4	$x \ge 0$; $x \ne 1$	$\sqrt{x} \ge 0$	(2)
	OR/OF	$\sqrt{x} \neq 1$ OR/OF	(2)
	$0 \le x \le 1$ or $x \ge 1$	$\checkmark 0 \le x \le 1$	
	OR/OF	$\sqrt{x > 1}$	
	$x \in [0;1) \cup (1;\infty)$		
			[8]

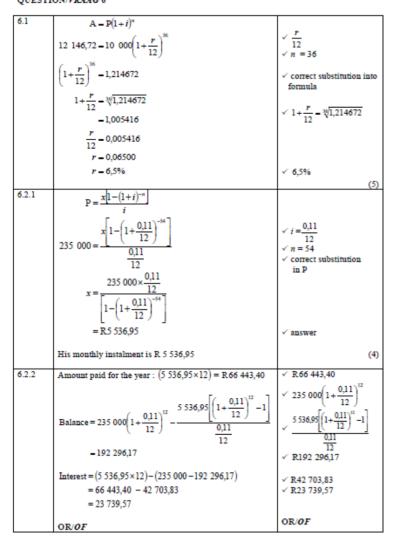
6.1	y = mx + c 5-1		
	$m = \frac{5-1}{4-0}$	√ substitution into	
	<i>m</i> -1	gradient formula	
	c -1	√y-intercept (0 ; 1)	
	g(x) = x + 1	OR/OF	(2)
	OR/OF	01001	
	y = mx + c 5 = m(4) + 1	√substitute (4;5)	
	5 = m(4) + 1 m = 1	$\sqrt{c} = 1$	
	m = 1 g(x) = x + 1		(2
6.2	$x^2 - 2x - 3 = 0$		
0.2	(x - 2x - 3) = 0 (x + 1)(x - 3) = 0	$\sqrt{y} = 0$	
	x = -1 or $x = 3$	✓ factors	
	A(-1:0) = B(3:0)	√x-values	(3)
6.3	$x = \frac{-1+3}{2}$ or $x = \frac{-b}{2a} = \frac{-(-2)}{2(1)}$ or $f'(x) = 2x - 2 = 0$		
	$x = \frac{1}{2}$ or $x = \frac{1}{2a} = \frac{1}{2(1)}$ or $f'(x) = 2x - 2 = 0$		
	x = 1	√x -value	
_	$f(x) = x^2 - 2x - 3$		
0	$y = (1)^2 - 2(1) - 3$ or $y = (x^2 - 2x + (-1)^2) - 3 - 1$	✓ substitution/	
_	$y = -4$ = $(x-1)^2 - 4$	completing the squ	uare
	$y \ge -4$ or $[-4;\infty)$	√ answer	
	/- · · · · · · · · · · · · · · · · · · ·	✓ answer	G
6.4.1	MN: $y = (x^2 - 2x - 3) - (x + 1)$		(2
	$= x^2 - 3x - 4$	$\sqrt{x^2 - 3x - 4}$	
	$6 = x^2 - 3x - 4$	\checkmark substituting $y = 6$	
	$0 = x^{2} - 3x - 10$		
	0 = (x - 5)(x + 2)		
	x = 5 or $x = -2$	\checkmark values of x	
	OT = 2 or OT = 5	✓ OT = 2	
	NA		(4
6.4.2	y = x + 1 substitute $x = -2$	\checkmark substituting $x = -2$	2
	y = x + 1 substitute $x = -2= (-2) + 1$		
	=-1		
	N(-2;-1)	✓ answer	(2)

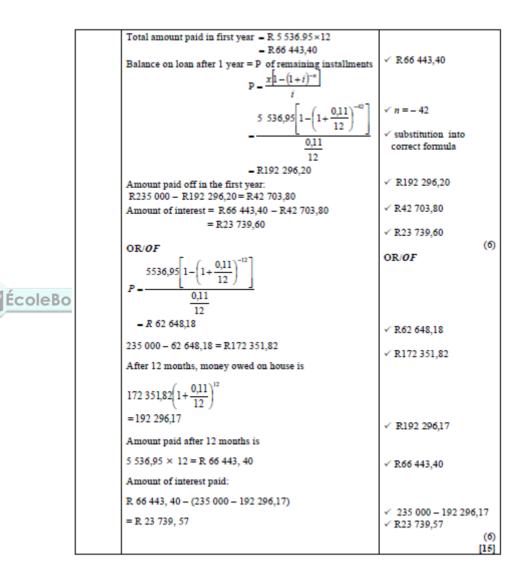


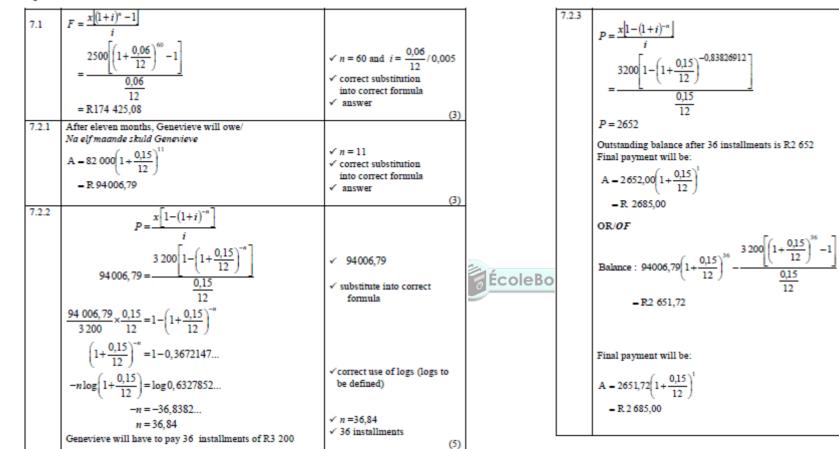

NOV 2019

4.1	p = -1	✓ p = -1	(1)
4.2	$y = \frac{a}{x-1}$		
	y - x-1		
	$-3 = \frac{a}{0-1}$	✓ coordinates D(0 ; –	3)
		√substitute (0 ; -3)	
	a = 3		
	$y = x^2 + bx - 3$		
	$0 = (1)^2 + (1)b - 3$	√substitute (1;0)	
	b = 2		(3)
4.3	$y = x^2 + 2x - 3$		
	axis of sym: $x = \frac{-b}{2a}$		
	$\frac{1}{2a}$		
	$x = \frac{-2}{2(0)}$	✓ substitution	
	2(1)	✓ x = -1	
	x 1		
	$y = (-1)^2 + 2(-1) - 3 = -4$	√substitution	
	C(-1;-4)	$\checkmark y = -4$	(4)
	OR/OF	OR/OF	
	$\frac{dy}{dx} = 0$	01001	
	ax 0		
	2x+2=0	✓ derivative	
	x = -1	√ x = -1	
	$y = (-1)^2 + 2(-1) - 3 = -4$	√substitution	
	C(-1;-4)	√y = -4	(4)
4.4	$y \in [-4;\infty)$ or $y \ge -4$	√_4	(4)
1.1	yet-1, y et y =	✓ answer	(2)
4.5	$m = \tan 45^\circ = 1$	√ gradient	. /
	y = mx + c		
	-4 = (1)(-1) + c	\checkmark subs <i>m</i> and (-1;-	4)
	c = -3		
	y = x - 3	√equation	(3)
4.6	No, the line passes through C and D	√ No	
		✓ reason	(2)
	OR/OF	OR/OF	
	No, a tangent through turning point C will have a	✓ No	
	gradient of 0	✓ reason	(2)

EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020


4.7	f(m-x)=f[-(x-m)] f is reflected in the y-axis and translated 1 unit to the left and 4 units upwards. Therefore: $m = -1$ q = 4	$\checkmark \checkmark$ value of m $\checkmark \checkmark$ value of q	(4)
	OR/OF	OR/OF	
	Substitute $x = 0$ and $q = 4$ for one x-intercept $h(x) = (m-x)^2 + 2(m-x) - 3 + q$ $h(0) = (m-0)^2 + 2(m-0) - 3 + 4$ $0 = m^2 + 2m + 1$ $0 = (m+1)^2$ m = -1		
	q = 4	$\checkmark \checkmark$ value of m $\checkmark \checkmark$ value of q	(4)
			[19]





EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020

FINANCE, GROWTH AND DECAY NOV 2017

FEB 2018

QUESTION/VRAAG 7

(5)

[16]

 $\sqrt{n} = -083826912$

formula

√answer

✓ 2652.00

√answer

OR/OF

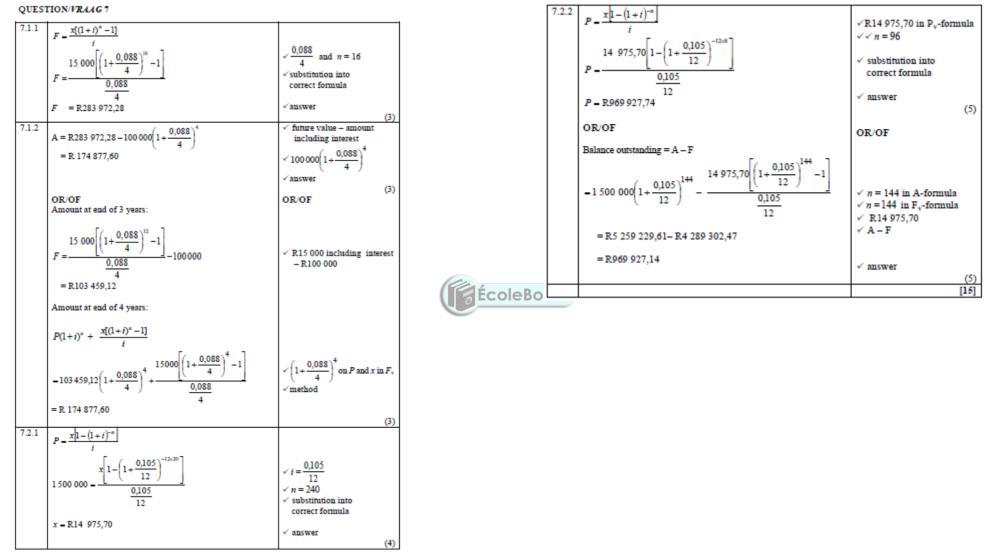
94006.79

√ 2 651.72

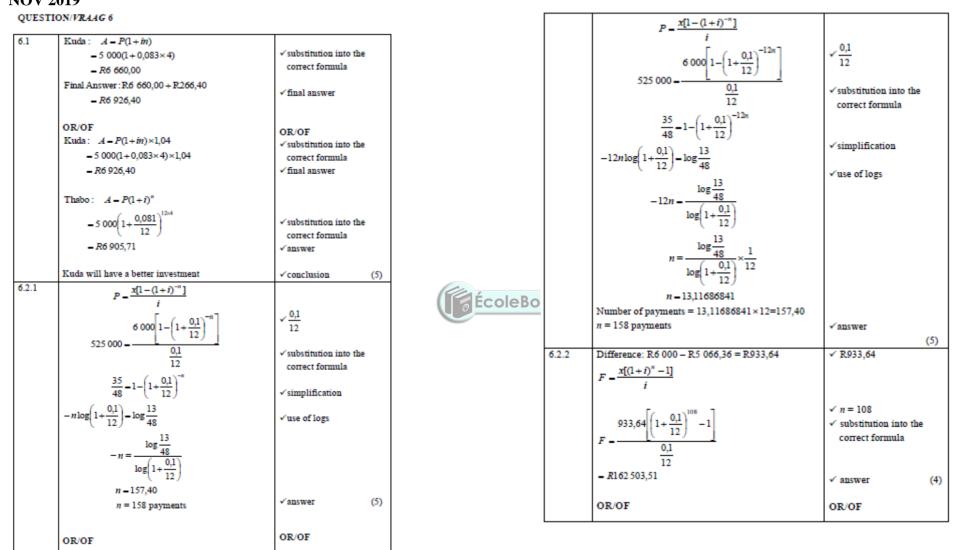
✓ 2651,72(1
✓ answer

3 200 1+-

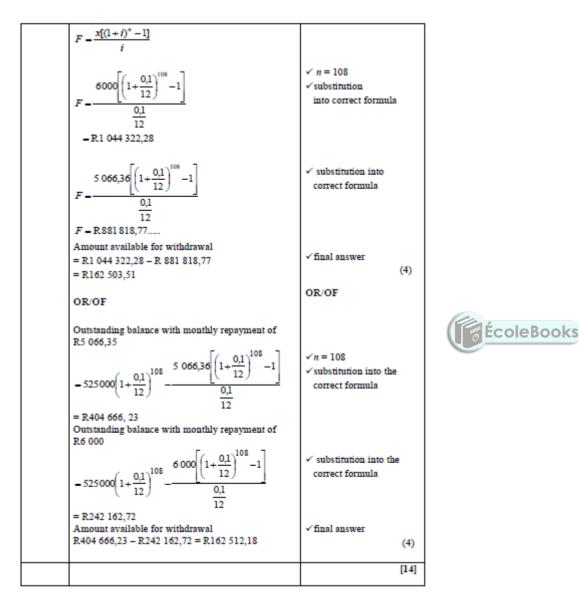
0,15 12


0.15

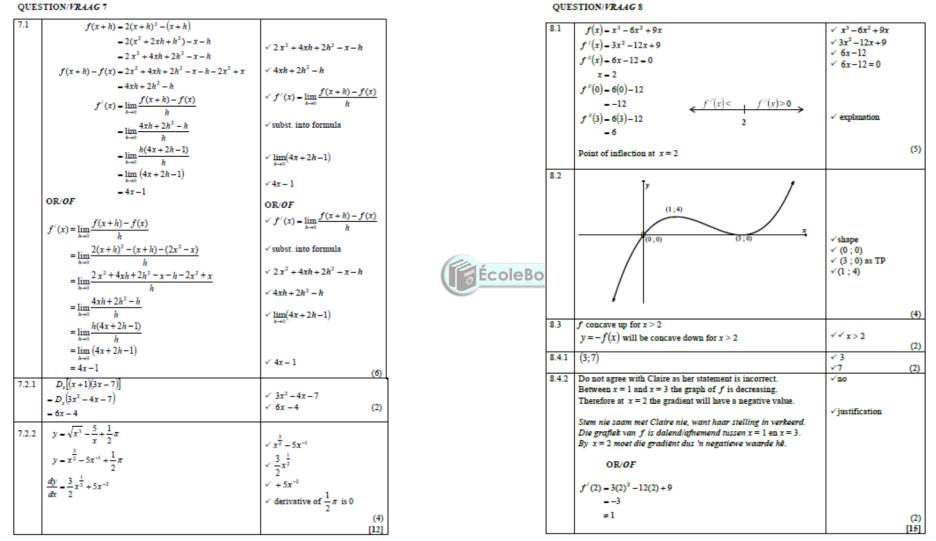
12


✓ substitute into correct

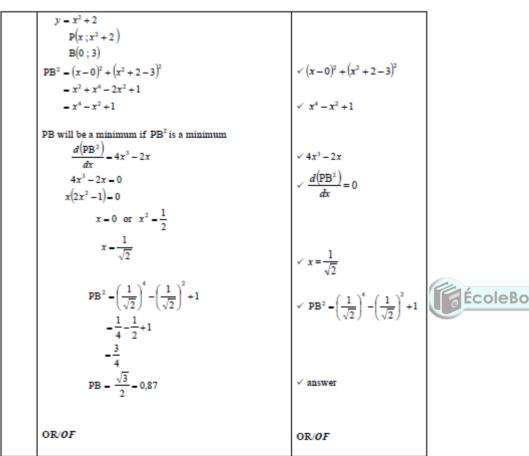
EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020


NOV 2018

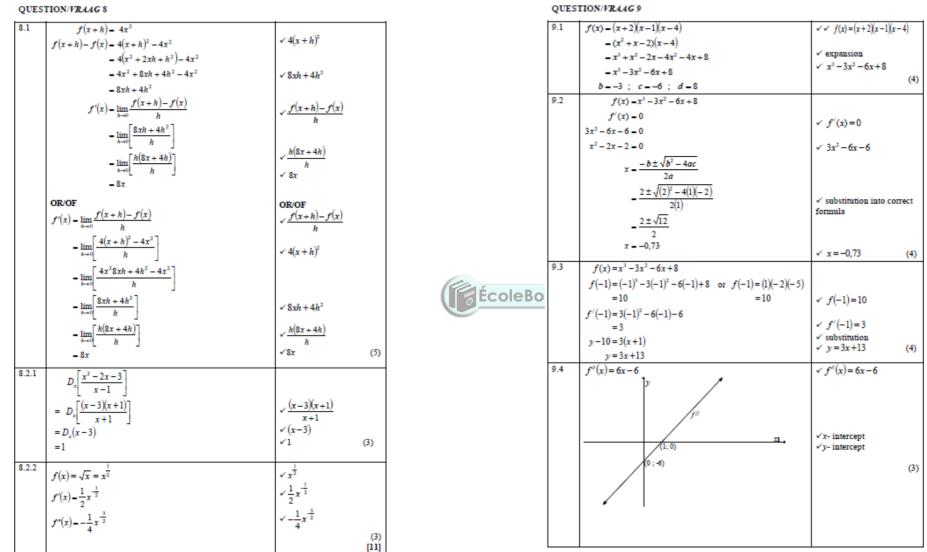
NOV 2019



EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020

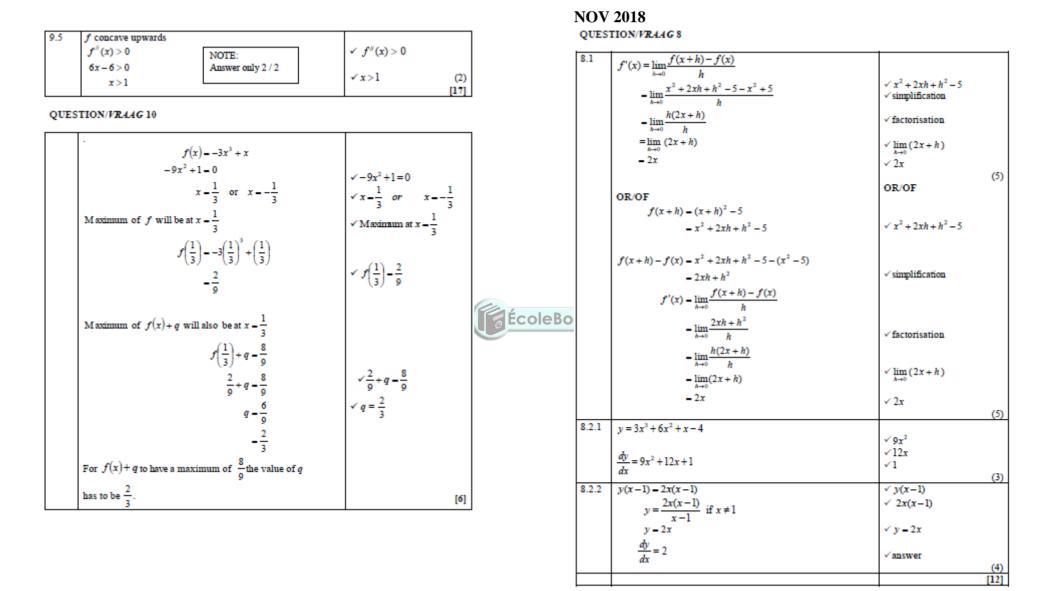

DIFFERENTIAL CALCULUS NOV 2017

NUV 2017

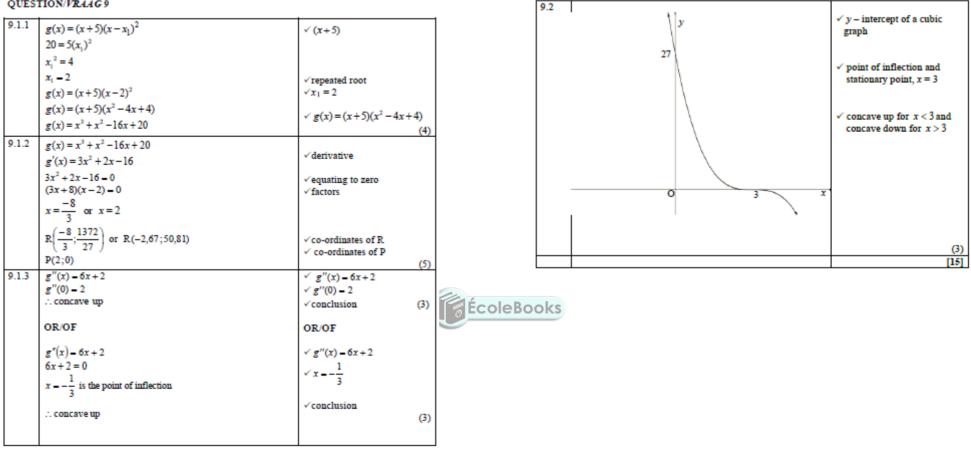


EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020

OUESTION/VRAAG 9

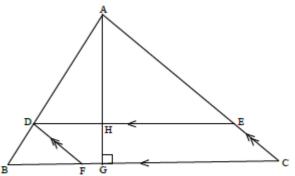


Gradient of tangent to curve =2x $\sqrt{=2r}$ Gradient of line joining B and the curve = $\frac{x^2 + 2 - 3}{x - 0}$ $=\frac{x^2-1}{x}$ $\checkmark = \frac{x^2 - 1}{x}$ Shortest distance will be where tangent to curve is perpendicular to the line joining P and the curve. $\sqrt{\frac{x^2-1}{x}} = -\frac{1}{2x}$ $\frac{x^2-1}{x} = -\frac{1}{2x}$ $2x(x^2-1) = -x$ $2x^3 - 2x = 0$ $\sqrt{2x^3} - 2x = 0$ $x(2x^2-1) = 0$ x = 0 or $x^2 = \frac{1}{2}$ $x = \frac{1}{\sqrt{2}}$ $\sqrt{x} = \frac{1}{\sqrt{2}}$ $\mathbf{PB}^2 = \left(\frac{1}{\sqrt{2}}\right)^4 = \left(\frac{1}{\sqrt{2}}\right)^2 + 1 \qquad \qquad \mathbf{PB}^2 = \left(\frac{1}{\sqrt{2}}\right)^4 = \left(\frac{1}{\sqrt{2}}\right)^2 + 1$ $-\frac{1}{4}-\frac{1}{2}+1$ $-\frac{3}{4}$ $PB = \frac{\sqrt{3}}{2} = 0.87$ ✓ answer OR/OF OR/OF $P(k;k^2+2)$ and B(0;3) $\checkmark P(k;k^2+2)$ BP \perp tangent passing through $y = x^2 + 2$ at P. $m_{\text{tensorst at } \mathbb{P}} = 2k$ $\sqrt{m_{\text{tanaent at } p}} = 2k$ $m_{\rm BP} = -\frac{1}{2E}$ $\sqrt{m_{HP}} = -\frac{1}{2\hbar}$ Equation of BP: $y = \left(-\frac{1}{2k}\right)x + 3$ $\sqrt{y} = \left(-\frac{1}{2k}\right)x + 3$ $y_p = \left(-\frac{1}{2k}\right)(k) + 3 = 2,5$ ✓ value of y at P $\Rightarrow k^2 + 2 = 2,5$ and so $k = \sqrt{0,5}$ and $P(\sqrt{0,5}; 2,5)$ \checkmark value of k $BP = \sqrt{\left(\sqrt{0.5} - 0\right)^2 + \left(2.5 - 3\right)^2} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} = 0.87$ ✓ answer 57 rage

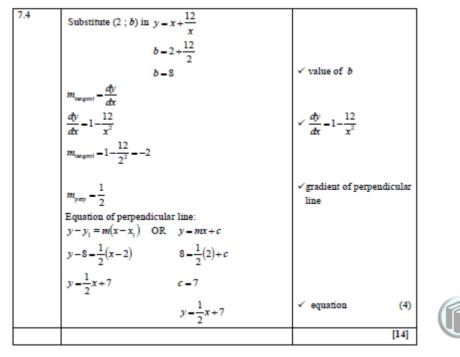


FEB 2018

EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020


59 | Page

EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020


OUESTION/VRAAG 10

10.1 10.2

NOV 2019

		₽ ₽ _		7.1	$f(x) = 4 - 7x$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{4 - 7(x+h) - (4 - 7x)}{h}$ $= \lim_{h \to 0} \frac{h(-7)}{h}$ $= -7$	 ✓ 4-7(x+h) ✓ substitution ✓ simplification ✓ answer 	(4)
A	$B = F G$ $AH = \frac{3}{2}$ rea of a parallelogram = base × \perp height	✓ answer (1)		7.2	$y = 4x^{8} + \sqrt{x^{3}}$ = $4x^{8} + x^{\frac{3}{2}}$ $\frac{dy}{dx} = 32x^{7} + \frac{3}{2}x^{\frac{1}{2}}$	$\checkmark x^{\frac{3}{2}}$ $\checkmark 32x^{7}$	
A	$rea = \frac{3}{5}(5-t) \cdot \frac{2}{5}t$ $rea = \frac{6}{25}(5-t)t$ $t(t) = -\frac{6}{25}t^2 + \frac{6}{5}t$	$\frac{2}{5}t \\ \frac{3}{5}(5-t) \\ \frac{3}{5}(5-t) \\ \frac{3}{25}t^{2} + \frac{6}{5}t$	ÉcoleBo	7.3.1	$y = \alpha x^{2} + a$ $\frac{dy}{dx} = 2\alpha x + 0$ $\frac{dy}{dx} = 2\alpha x$	$\sqrt{\frac{3}{2}x^{\frac{1}{2}}}$	(3)
-	$\frac{t'(t) - \frac{12}{25}t + \frac{6}{5}}{\frac{12}{25}t + \frac{6}{5} - 0}{2t - 30 = 0}$	$\sqrt{-\frac{12}{25}t+\frac{6}{5}}$		7.3.2	$\frac{dx}{y - ax^2 + a}$ $\frac{dy}{da} - x^2 + 1$	√ √ answer	(2)
1	$-\frac{30}{12} \text{ or } \frac{5}{2}$	√answer (5) [6]					

QUESTION/VRAAG 9

	9.1	$f'(x) = 9x^2$	$\checkmark f'(x) = 9x^2$	
		$3x^3 - 9x^2$		
		$3x^3 - 9x^2 = 0$		
		$3x^2(x-3) = 0$	$\sqrt{x} = 0$	
		x = 0 or x = 3	√ x = 3	(3)
	9.2.1	For f and f'	✓ answer	(1)
	9.2.2	The point (0 ; 0) is : A point of inflection of f A turning point of f'	 ✓ f: inflection point ✓ f': turning point 	: (2)
	9.3	f''(x) = 18x	$\checkmark f''(x) = 18x$	
		Distance = $f''(1) - f'(1)$		
		$-18(1) - 9(1)^2$	✓substitution	
		- 9	√answer	(3)
	9.4	$3x^3 - 9x^2 < 0$	$\sqrt{3x^3-9x^2} < 0$	
		$3x^2(x-3) < 0$	✓ factors	
ÉcoleBo		but $3x^2 > 0$		
		∴x-3<0	✓ x<3	
		∴ <i>x</i> < 3 , <i>x</i> ≠ 0	√ x≠0	(4)
				[13]

8.1	36cm	√answer (1)
8.2	$\therefore t = 6$ $(-2t^2 + 3t - 6)$ have no real roots Insect reaches the floor only once.	√√√ only once (3)
8.3	$h(t) = -2t^{3} + 15t^{2} - 24t + 36$ $h'(t) = -6t^{2} + 30t - 24$	✓ expansion
	$-6t^{2} + 30t - 24 = 0$ $t^{2} - 5t + 4 = 0$	$\sqrt{-6t^2 + 30t - 24} = 0$
	(t-4)(t-1) = 0 t-4 or $t-1Only t-4 because maximum value required$	√both values
	$h = -2(4)^3 + 15(4)^2 - 24(4) + 36 = 52 \text{ cm}$	√answer (4)
		[8]

(4)

(2)

(2) [8]

EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020

cole

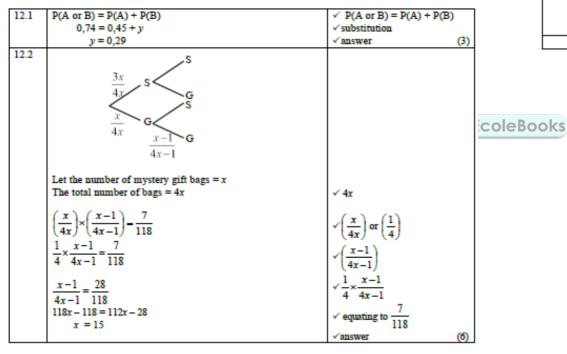
PROBABILITY NOV 2017 OUESTION/VRAAG 10

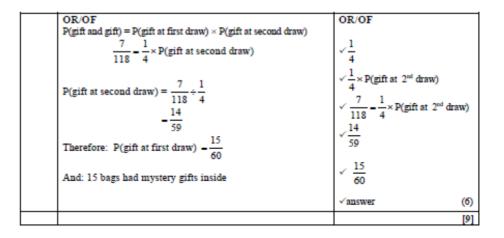
10.1 n(S) = 100 8 values need to be T placed in correct т 40 - x 4 2 position: 8 / 2 or 3 correct: 1 mark r 5 4 or 5 correct: 2 marks 6 or 7 correct: 3 marks 60 - x8 correct: 4 marks 14 10.2 (49-x)+x+8+4+5+2+(60-x)+14=100✓ setting up equation -x+142 = 100x = 42 ✓ answer 7+2+18 7+2+18 10.3 P (use only one application) _ 100 100 $-\frac{27}{100}$ or 27% √answer

QUESTION/VRAAG 11

11.1	I	5 x 5 x 10 x 9 2250			~	5 x 5 10 x 9 2250	(3)
11.2		No of digits used 1 2 3 4 5 odes of two lett mbers for 700	Digits 10 10 x 9 10 x 9 x 8 10 x 9 x 8 x7 10 x 9 x 8 x7 x 6 re digits will ensure to 5.	Total 250 2250 18000 126000 756000 unique		′5x5x10x9x √five digits	(3) (5]

FEB 2018

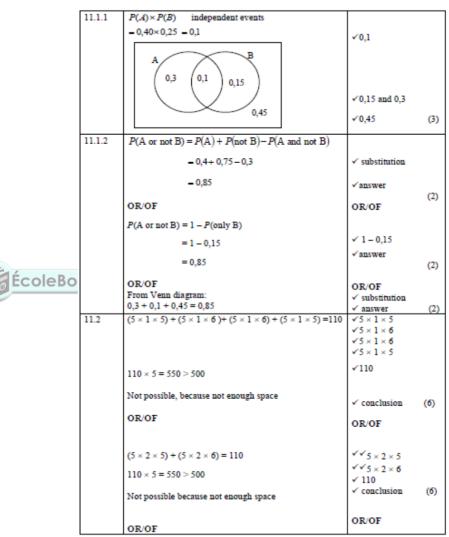

OUESTION/VRAAG 11


	11.1.1	Let the event Veli arrive late for school be V.		
		Let the event Bongi arrive late for school be B. /		
		Laat V die gebeurtenis wees dat Veli Laat B die gebeurtenis		
		wees dat Bongi laatkom	✓ answer	
		P(V or B)=1-0,7	0	1)
		= 0,3		
	11.1.2	P(V or B) = P(V) + P(B) - P(V and B)	✓ P(V or B) = P(V) +P(B)	
		0.3 = 0.25 + P(B) - 0.15	-P(V and B)	
		P(B) = 0.2	✓ substitution	
		F(D) = 0,2	✓ 0,2	
	11.1.2	D(D) - 0.05 0.0	(: √ P(V) × P(B) = 0.05	3)
	11.1.5	$P(V) \times P(B) = 0.25 \times 0.2$	$\checkmark P(V) \times P(B) = 0.05$	
		= 0,05		
		$P(V) \times P(B) \neq P(V \text{ and } B)$	$\checkmark P(V) \times P(B) \neq P(V \text{ and } B)$	
		V and B are NOT independent/		
		V en B is NIE onafhanklik nie.	✓NOT independent	3)
			(-	"
	11.2.1	6!=720	✓ 6! or 720	
				2)
	11.2.2	Number of arrangements	(-	-/
			✓ 3!×3!	
BO		= 3! × 3! × 2	✓ × 2	
		- 72	✓ answer	
			(3	3)
			-	
	11.2.3	$P(\text{hearts next to each other}) = \frac{3! \times 4!}{2!}$		
	11.2.5	P(nearts next to each other) =6!	✓ ✓ 3!×4!	
		144		
		- 144 720		
		- 1/5 or 0,2 or 20%	$\sqrt{\frac{1}{5}}$ or 0,2 or 20%	
		3	5	
		OR/0F	OR/OF	
			01001	
		P(hearts next to each other) = $\frac{4 \times 3! \times 3!}{6!}$	11	
		6!		
		144		
		- 144 720		
		1	$\sqrt{\frac{1}{5}}$ or 0,2 or 20%	
		-1/5 or 0,2 or 20%	5	
		-		
				3)
			[1:	2

NOV 2018

QUESTION/VRAAG 11

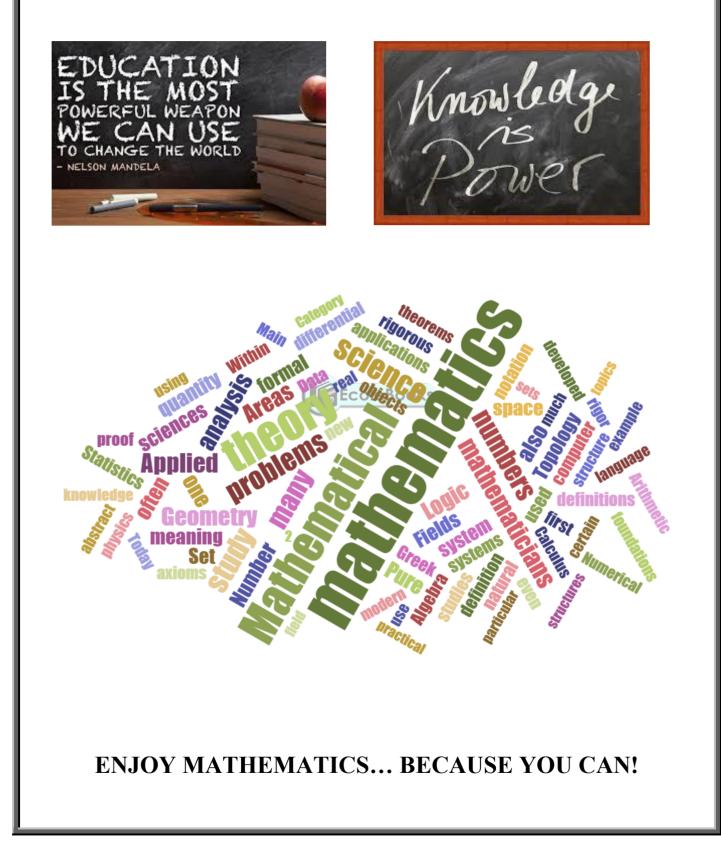
11.1.1	7 ⁵ =16 807	√√ answer	(2)
11.1.2	$7 \times 6 \times 5 \times 4 \times 3$ - $\frac{7!}{2!}$ - 2520	$\sqrt{7} \times 6 \times 5 \times 4 \times 3 \text{ or } \frac{7!}{2!}$ $\sqrt{3} \text{ answer}$	(2)
11.2	2×7×1=14	✓✓✓ 2×7×1	(3)
			[7]



EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020

NOV 2019 OUESTION/FR44G 10

10.1	$P(\text{same day}) = \frac{4}{16} \text{ or } \frac{1}{4} \text{ or } 0,25 \text{ or } 25\%$	√4 numerator √16 denominator	(2)
10.2	$P(2 \text{ consecutive days}) = \frac{3 \times 2}{16} - \frac{3}{8}$	√3√×2 √ answer	(3)
			[5]


	√√5×4×6=120
5×4×6-120 5×2-10	√ 5×2 - 10
∴ 120-10 - 110	√120-10
110 × 5 = 550 > 500	√110
Not possible because not enough space	✓ conclusion (6)
	[11]

Download more resources like this on ECOLEBOOKS.COM EC CURRICULUM: MATHEMATICS BOOKLET 1 OF 2020

EC CURRICULUM: FET MATHEMATICS, MATHEMATICAL LITERACY AND TECHNICAL MATHEMATICS

