Downloaded from Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS TERM 1 TEST - 2022

a: 1 Hour led

TIME:

This question paper consists of 6 pages, including information sheet.

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of SIX questions
- 2. Answer ALL the questions
- 3. Answers only will NOT necessarily be awarded full marks.
- 4. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 5. Diagrams are NOT necessarily to drawn to scale.
- 6. An information sheet with formulae is attached at the end of the question paper.
- 7. Write neatly and legibly.

QUESTION 1

Consider the quadratic number pattern: $-\frac{1}{2}$; 2; $\frac{11}{2}$; 10; ...

1.1 Write down the value of T_5 . (1)

(4)

(2)

2.1 Determine T_{20} . (3)

Calculate the sum of the first 20 terms. 2.2 (2) [5]

The n^{th} term of a geometric series is $T_n = x(x+1)^{n-1}$

3.1 (2) Determine the common ratio, in terms of x, in its simplest form.

Determine the values of x so that the series $\sum_{n=0}^{\infty} x(x+1)^{n-1}$ converges. 3.2 (3)

3.3 (3) Calculate S_{∞} .

3.4 If x = 1, write down the first three terms of the geometric series. (2)

Determine the sum of the first 25 terms of the series calculated in Question 3.4. 3.5 (3)

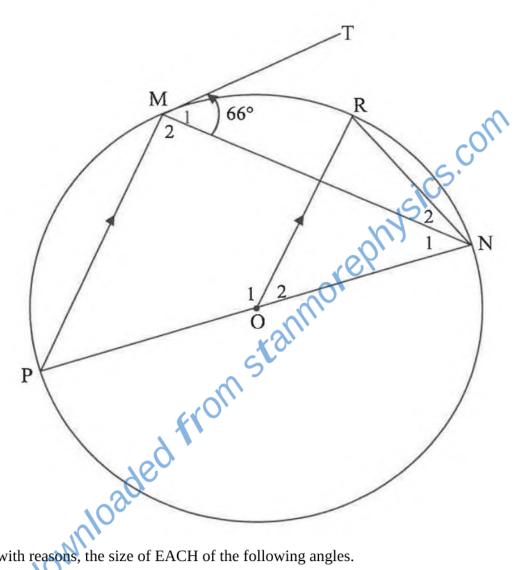
[13]

[7]

Download more resources like this on ECOLEBOOKS.COM Downloaded from Stanmorephysics.com

QUESTION 4

PON is a diameter of the circle centred at O. TM is a tangent to the circle at M, a point on the circle. R is another point on the circle such that OR || PM. NR and MN are drawn and $\hat{M}_1 = 66^{\circ}$.



Calculate with reasons, the size of EACH of the following angles.

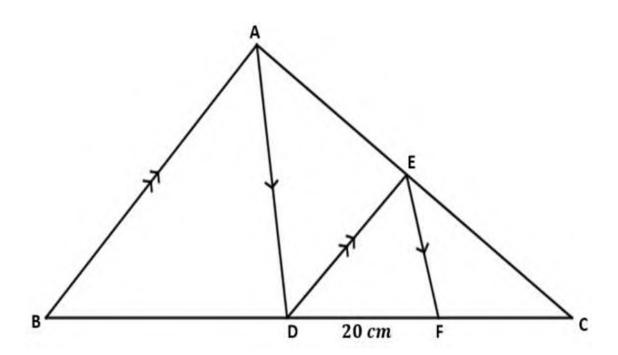
$$4.1 \quad \hat{P} \tag{2}$$

$$4.2 \qquad \hat{M}_2 \tag{2}$$

4.3
$$\hat{N}_1$$
 (1) [5]

QUESTION 5

In the diagram, \triangle *ABC* with points D and F on BC and E a point on AC such that EF || AD and DE || BA. Further it is given that $\frac{AE}{EC} = \frac{5}{4}$ and DF = 20 cm.



5.1 Calculate giving reasons, the length of:

5.2 Evaluate
$$\frac{Area \Delta ECF}{Area \Delta ABC}$$
 (4)

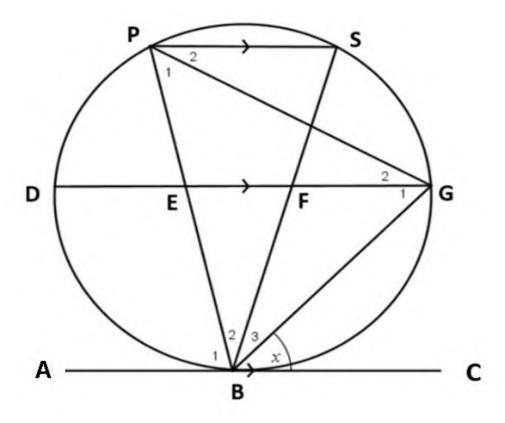
[10]

Download more resources like this on ECOLEBOOKS.COM Downloaded from Stanmorephysics.com

QUESTION 6

In the diagram P, S, G, B and D are points on the circle such that PS || DG || AC.

ABC is a tangent to the circle at B. GBC = x



6.1 Give a reason why
$$\hat{G}_1 = x$$
. (1)

6.2 Prove that:

$$6.2.1 BE = \frac{BP \times BF}{BS} (2)$$

6.2.2
$$\Delta BGP ||| \Delta BEG$$
 (4)

6.2.3
$$\frac{BG^2}{BP^2} = \frac{BF}{BS}$$
 (3)

[10]

TOTAL: 50 Marks

Downloaded from Stanmorephysics.com

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$

$$A = P(1-ni)$$

$$A = P(1-i)^r$$

$$A = P(1-ni)$$
 $A = P(1-i)^n$ $A = P(1+i)^n$

$$T_n = a + (n-1)d$$

$$T_n = a + (n-1)d$$
 $S_n = \frac{n}{2}(2a + (n-1)d)$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
 ; $r \neq 1$ $S_\infty = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x \left[\left(1 + i \right)^n - 1 \right]}{i}$$

$$P = \frac{x \left[1 - (1 + i)^{-n}\right]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$M\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$$

$$y = mx + c$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In A ABC:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^2 = b^2 + c^2 - 2bc \cdot \cos A \qquad area \, \Delta ABC = \frac{1}{2} ab \cdot \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$\overline{x} = \frac{\sum x}{n}$$

$$\partial^2 = \frac{\sum_{i=1}^n \left(x_i - \overline{x}\right)^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\bar{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

Download more resources like this on ECOLEBOOKS.COM Downloaded from Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKING GUIDELINE TERM 1 TEST – 2022

MARKS: 50

TIME: 1 HOUR

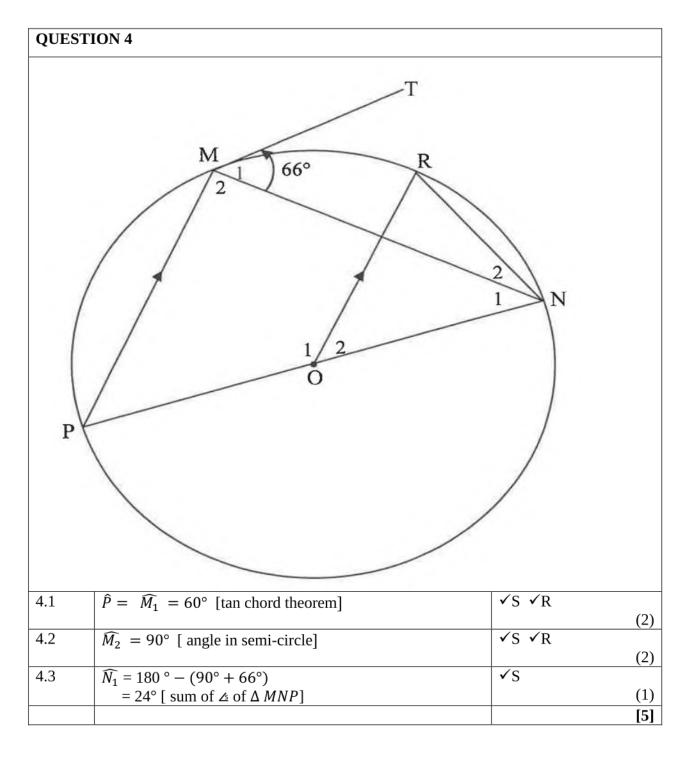
This marking guideline consists of 6 pages.

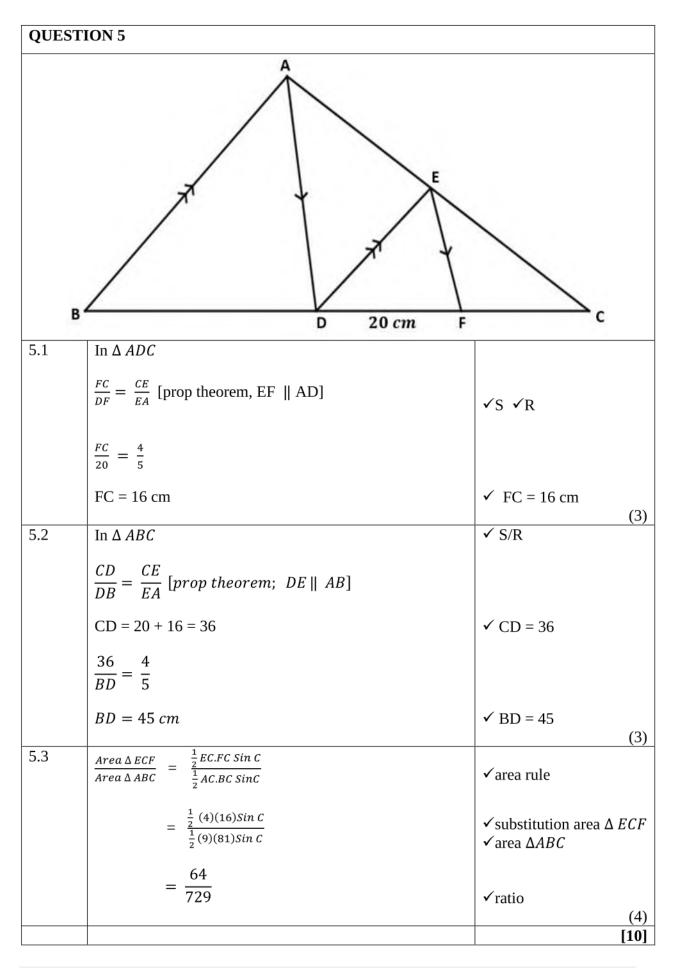
QUESTION 1		
1.1.	$\frac{31}{2}$	✓ answer (1)
1.2.	$\frac{-1}{2}$ 2 $\frac{11}{2}$ 10	
	$ \begin{array}{c c} & 1 & 1 \\ 2a = 1 \end{array} $	✓ second difference
	$a = \frac{1}{2}$	$\checkmark a = \frac{1}{2}$
	$3\left(\frac{1}{2}\right) + b = \frac{5}{2}$	
	b = 1	$\checkmark b = 1$
	$\frac{1}{2} + 1 + c = -\frac{1}{2}$	
	c = -2	$\checkmark c = -2$
	$T_n = \frac{1}{2} n^2 + n - 2$	(4)
1.3.	$T_{75} - T_{74} = \frac{1}{2}(75)^2 + 75 - 2 - \left[\frac{1}{2}(74)^2 + 74 - 2\right]$	✓ correct substitution
	$=\frac{151}{2}$	✓ answer (2)
		[7]

QUESTION 2		
2.1.	a = 3 and $d = 4$	✓ a and d
	$T_{20} = 3 + (20 - 1)4$ = 79	✓ substitution into correct formula ✓ answer (3)
2.2.	$S_n = \frac{n}{2}[2a + (n-1)d]$	
	$S_{20} = \frac{20}{2} [2(3) + (20 - 1)4]$	✓ substitution into correct formula
	= 820	✓ answer
	OR 20	
	$S_{20} = \frac{20}{2}[3+79]$	
	= 820	(2)
		[5]

OVERGENONES		
QUEST		
3.1	$T_1 = x(x+1)^0 = x$	✓ substitution of n = 0 and n =1
	$T_2 = x(x+1)^1$ $T_2 \qquad x(x+1)$	II – O and II – I
	$\frac{T_2}{T_1} = \frac{x(x+1)}{x}$	$\checkmark r = x + 1 \tag{2}$
	=x+1	r = x + 1 (2)
3.2	If a series converges	
	-1 < r < 1	$\sqrt{-1} < r < 1$
	-1 < x + 1 < 1	✓ substitution of r
	-2 < x < 0	✓ answer (3)
3.3	$-2 < x < 0$ $S_{\infty} = \frac{a}{1 - r}$	
	$=\frac{x}{1-(x+1)}$	✓ substitution in the correct formula
	$=\frac{x}{1-x-1}$	✓ simplification
	= -1	✓ answer (3)
3.4	$T_1 = x = 1$ $T_2 = x(x+1) = 1(1+1) = 2$	
	$T_3 = x(x+1)^2 = 1(1+1)^2 = 4$	
	r=2	✓ ratio r =2
	$1 + 2 + 4 + \cdots$	✓ series
	1 + 2 + 4 +	
		(2)

3.5	$S_n = \frac{a(r^n - 1)}{r - 1}$ $S_{25} = \frac{1(2^{25} - 1)}{2 - 1}$ $= 33554432 - 1$	✓ substitution in the correct formula
	= 33554431	\checkmark ✓ answer (3)
		[13]





QUESTION 6			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
6.1.	Alt ≱ [DG AC]	✓R (1)	
6.2.1.	$\frac{BE}{BP} = \frac{BF}{BS}$ (Prop theorem EF PS)	√S √R	
	$\therefore BE = \frac{BP \times BF}{BS}$	(2)	
6.2.2	In \triangle BGP and \triangle BEG		
	$\widehat{P}_1 = x$ [tan-chord theorem] = \widehat{G}_1 from 6.1 P \widehat{B} G = E \widehat{B} G [common]	✓S ✓R	
	$P\hat{B}G = E\hat{B}G$ [common]	√s	
	$B\widehat{G}P = B\widehat{E}G \text{ [sum } \angle \text{ of } \Delta\text{]}$	✓R	
	∴ Δ BGP Δ BEG [∠,∠,∠]	(4)	
6.2.3.	$\frac{BG}{BE} = \frac{BP}{BG} \ [\Delta \text{ BGP} \parallel \Delta \text{ BEG}]$	✓ ratio	
	$\therefore BG^2 = BP \times BE$		
	$= BP \times \left(\frac{BP \times BF}{BS}\right)$	✓substitution of BE	
	$= \frac{BP^2 \times BF}{BS}$	$\checkmark \qquad \frac{BP^2 \times BF}{BS}$	
	$\therefore \frac{BG^2}{BP^2} = \frac{BF}{BS}$	(3)	
		[10] TOTAL: 50	