

Math Dawnloaded from Stanmorephysics.com

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 7 questions.
- 2. Clearly show ALL calculations, diagrams, graphs, etc. that you have used to determine your answers.
- 3. Answers only will NOT necessarily be awarded full marks.
- If necessary, round off answers to TWO decimal places, unless stated otherwise. 4.
- 5. Diagrams are NOT necessarily drawn to scale.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- The answer sheets for question 5, 6 and 7 are included in the question paper. 7.
- uded : stanningstanningstanningstanningstanningstanningstanningstanningstanningstanningstanningstanningstanningstanning An information sheet with formulae is included at the end of the question paper. 8.
- 9. Write neatly and legibly.

Download more resources like this on ECOLEBOOKS.COM Math Downloaded from Stanmorephysics.com FS/MARCH 2022 NSC

QUESTION 1

1.1

Solve f	or x:		
1.1.1	x(x+6) = 0		(2)
1.1.2	$3x^2 + 8x = -2$	(correct tot TWO decimal places)	(4)
1.1.3	$x^2 - 64 \le 0$		(3)
1.1.4	$\sqrt{x+5}+1=x$		(5)

Solve simultaneously for *x* and *y* in the following equations: 1.2

	6x + 5xy - 5y = 8	(6)
	x + y = 2	
	icsi	[20]
OUE	STION 2	
2.1	Consider the quadratic number pattern: -20 ; -9 ; 0 ; 70	
	2.1.1 Determine the n th term .	(4)

- 2.1.2 Determine the position and the value of the term with the highest value. (3)
 - [7]

QUESTION 3

2	2.1.2 Determine the position and the value of the term with the highest value.	(3)
	Stall	[7]
QUEST	FION 3	
3.1	Given the following arithmetic sequence: 13 ; 8 ; 3 ;	
	3.1.1 Determine the value of the 50 th term.	(3)
	3.1.2 Calculate the sum of the first fifty terms.	(2)
3.2	Prove that: $a + a + d + a + 2d +$ (to n terms) = $\frac{n}{2} [2a + (n-1)d]$	(4)

3.3 Consider the geometric series:
$$3 + m + \frac{m^2}{3} + \frac{m^3}{9} + ...$$

3.3.1 For which value(s) of m will the series converge? (3)

3.3.2 It is given that:
$$3 + m + \frac{m^2}{3} + \frac{m^3}{9} + ... = \frac{27}{7}$$

Calculate the value of m

Determine the value of n if: 3.4

$$\sum_{r=1}^{n} 5.2^{1-r} = \frac{630}{64} \tag{6}$$

[21]

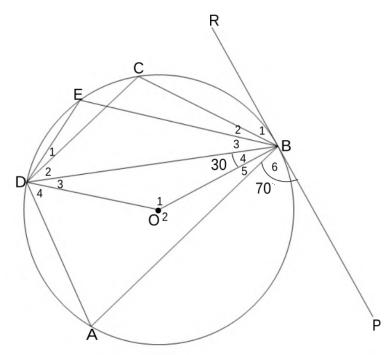
(3)

Math**Dawnloaded from Stanmorephysics.com**

QUESTION 4

DO NOT USE A CALCULATOR FOR THIS QUESTION.

4.1	Given: $\tan \theta = \frac{3}{4}$; where $\theta \in \left[0^\circ; 90^\circ\right]$	
	With the use of a sketch and without the use of a calculator, calculate:	
	4.1.1 $\sin\theta$	(3)
	4.1.2 $\cos^2(90^{\circ} - \theta) - 1$	(2)
	4.1.3 1-sin 2 <i>θ</i>	(3)
4.2	Simplify completely:	
	$\frac{\sin^2(90^\circ + \alpha) + \sin(180^\circ + \alpha)\sin(-\alpha)}{\sin 180^\circ - \tan 135^\circ}$	(5)
4.3	Prove the following identity:	
	$\sin 2\theta + \cos(2\theta - 90^\circ) = 4\sin\theta\cos\theta$	(3)
4.4	Solve for x if:	
	$20^{\sin x} + 20^{\sin x+1} = 420$ for $-360^{\circ} \le x \le 360^{\circ}$	(5)

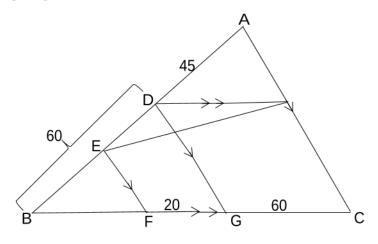

[21]

Download more resources like this on ECOLEBOOKS.COM Mathematical from Stanmorephysics.com NSC FS/MARCH 2022

QUESTION 5

5.1 In the diagram below ABCD is a cyclic quadrilateral. RBP is a tangent to the circle

with centre O. $B_4 = 30^{\circ}$ and $B_6 = 70^{\circ}$.


Determine with reasons the size of each of the following angles:

O ₁	(2)
Â	(2)
Ĉ	(2)
ADB	(2)
	Â Ĉ

[8]

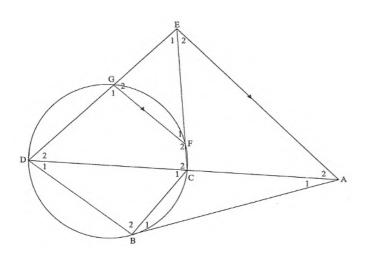
QUESTION 6

In the following diagram AD = 45, BD = 60, GC = 60 and FG = 20. ABC = 30.

Determine the size of

- 6.1 BF (4) 6.2 DE (3)
- 6.3 Calculate the area of $\triangle ABC$ (4)

[11]


Download more resources like this on ECOLEBOOKS.COM Mathematical from Stanmorephysics.com FS/MARCH 2022 NSC

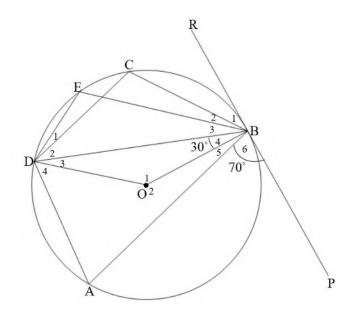
QUESTION 7

In the diagram, DGFC is a cyclic quadrilateral and *AB* is a tangent to the circle at *B*.

Chords DB and BC are drawn. DG produced and CF produced meet in E and DC is

produced to A. EA || GF

		[12]
7.4	Prove $AE = \sqrt{AD \times AC}$	(4)
7.3	Prove E ₂ =D ₂	(4)
7.2	Prove $\triangle ABC \Delta ADB$	(3)
7.1	Give a reason why $B_1=D_1$	(1)


TOTAL: 100

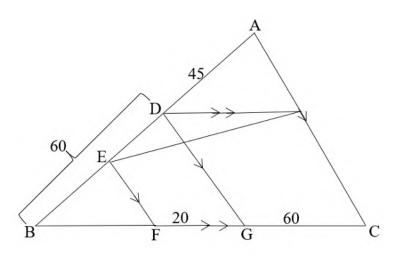
QUESTION 5

ANSWER SHEET

LEARNER NAME:....

GRADE 12:....

	STATEMENT	REASON	
5.1			
			(2)
5.2			
			(2)
5.3			
			(2)
5.4			
			(2)
			[8]

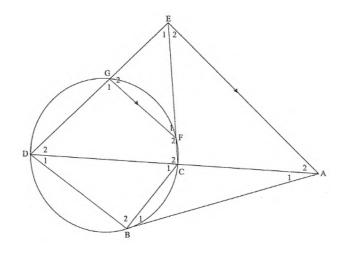

Copyright reserved

Please turn over

Download more resources	like t	this or	ECOLEBOOKS.COM
Math Dammissaded From Stanm	orephys	sics.cor	FS/MARCH 2022
QUESTION 6	NSC		ANSWER SHEET

LEARNER NAME:....

GRADE 12:....


	STATEMENT	REASON	
6.1			
			(4)
6.2			
0.2			
			(3)
			(3)
6.3			
			(4)
			[11]

QUESTION 7

ANSWER SHEET

LEARNER NAME:....

GRADE 12:....

	STATEMENT	REASON	
7.1			
			(1)
7.2			
			(3)
7.3			
			(1)
			(4)
7.4			
			(4)
			[12]

Copyright reserved

Please turn over

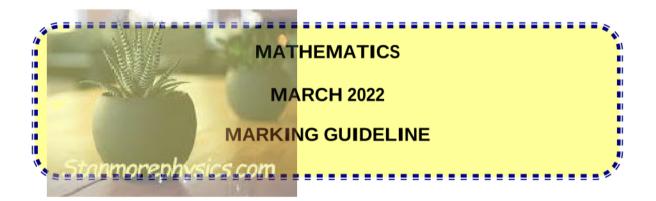
DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Download more resources like this on ECOLEBOOKS.COM Mathematicaded from Stanmorephysics.com NSC FS/MARCH 2022

INFORMATION SHEET

$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			
A = P(1 + ni)	A = P(1-ni)	$A = P(1-i)^{n}$	$A = P(1+i)^n$
$T_n = a + (n-1)d$	$S_n = \frac{n}{2} [2a$	u+(n−1)d]	
$T_n = ar^{n-1}$	$S_n = \frac{a(r^n)}{r-r}$	$\left(\frac{-1}{1}\right)$; r \neq 1	$S_{\infty} = \frac{a}{1-r}; -1 < r < 1$
$F = \frac{x[(1+i)^n - 1]}{i}$	P =	$=\frac{x\left[1-(1+i)^{-n}\right]}{i}$	
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f'(x+h)}{h}$	f (x)		
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - x_1)^2}$	$\overline{y_1}$ $M\Big($	$\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$	
y = mx + c	$y - y_1 = m(x - x_1)$	$m = \frac{y_2}{x_2}$	$\frac{-y_1}{-x_1} \qquad m = \tan \theta$
$(x-a)^2 + (y-b)^2 = r^2$	In	$\triangle ABC:$ $\frac{a}{\sin A} =$	$\frac{b}{\sin B} = \frac{c}{\sin C}$
		$a^2 = b^2$	$+ c^2 - 2bc. cos A$
		area Δr	$ABC = \frac{1}{2} ab. sin C$
$\sin(\alpha + \beta) = \sin \alpha . \cos \beta$	$+\cos\alpha.\sin\beta$	$\sin(\alpha - \beta) = \sin(\alpha - \beta)$	$\alpha .\cos\beta - \cos\alpha .\sin\beta$
$\cos(\alpha + \beta) = \cos \alpha . \cos \beta$	$\beta - \sin \alpha . \sin \beta$	$\cos(\alpha - \beta) = \cos(\alpha - \beta)$	$\cos \alpha . \cos \beta + \sin \alpha . \sin \beta$
$\int \cos^2 \alpha - \sin^2 \alpha$	χ		
$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$		$\sin 2\alpha = 2\sin \alpha$.cosα
$\overline{\mathbf{x}} = \frac{\sum \mathbf{x}}{n}$		$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})}{n}$) ²
$P(A) = \frac{n(A)}{n(S)}$		P(A or B) = P(A	A) + P(B) – P(A and B)
$\hat{y} = a + bx$		$b = \sum_{i=1}^{n}$	$\frac{\sum(x-\overline{x})(y-\overline{y})}{\sum(x-\overline{x})^2}$

Please turn over


Downloaded from Stanmorephysics.com

education

Department of Education FREE STATE PROVINCE

GRADE 12

MARKS: 100

These marking guidelines consists of 9 pages.

Copyright reserved

Please turn over

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Download more resources like this on ECOLEBOOKS.COM Mathemation International Action International Actional Actional Actional Actional

NOTE:

• If a candidate answers a question TWICE, only mark the FIRST attempt.

1.1.1	x(x+6)=0	✓ x = 0	
	x = 0 or $x = -6$	✓ x = -6	(2)
1.1.2	$3x^2 + 8x = -2$		
	$3x^2 + 8x + 2 = 0$	✓ standard form.	
	$-b+\sqrt{b^2-4ac}$	al la	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
	$-8 \pm \sqrt{(8)^2 - 4(3)(2)}$	substitution into the co	orrect formula.
	$x = \frac{-8 \pm \sqrt{(8)^2 - 4(3)(2)}}{2(3)}$	✓ x = 0, 23	✓ x = -2,90
	x = 0,23 or x = -2,90		(4)
110			
1.1.3	$x^2 - 64 \le 0$	(Factors	
	$(x+8)(x-8) \le 0$	✓ factors	
	Critical Values: -8 and 8		
		✓ diagram	
	-8≤x≤8 OR [-8;8]	✓ Answer	(3)
1.1.4	$x \sqrt{x+5} + 1 = x$		
	$\sqrt{x+5} = x-1$	✓ isolate $\sqrt{x+5}$	
	$\left(\sqrt{x+5}\right)^2 = \left(x-1\right)^2$	✓ squaring both sides	
	$x + 5 = x^2 - 2x + 1$		
	$x^{2}-3x-4=0$	✓ standard form	
	(x-4)(x+1) = 0	✓ factors	
	x = 4 or $x = -1$		
	\therefore x = 4 but x \neq -1	✓conclusion	(5)

Mathematical Mathematical Marking Guideline

1.2	6x + 5xy - 5y = 8 and $x + y = 2$	
	x = 2 - y(3)	\checkmark x – subject of the formula
	6(2-y)+5(2-y)y-5y=8	✓ substitution
	$12-6y+10y-5y^2-5y=8$	
	$5y^2 + y - 4 = 0$	✓ standard form
	(5y-4)(y+1) = 0	✓ factors
	$y = \frac{4}{5}$ or $y = -1$	✓ y – values
	$x = \frac{6}{5}$ or $x = 3$	\checkmark x – values (6)
		[20]

QUESTION 2

011	20. 0.0.7.	
2.1.1	-20; -9; 0; 7;	
	$\begin{array}{c}11 \\ \checkmark \\ \uparrow \\ \uparrow \\ \uparrow$	
	-2 -2	√value of a
	2a = -2 3(-1) + b = 11	✓ value of b
	-1+14+c=-20	\checkmark value of c
	a = -1 b = 14	
	c = -7	$\checkmark T_n$ (4)
	$\therefore T_n = -n^2 + 14n - 7$	
2.1.2	$n = \frac{-b}{2a}$	$\checkmark \frac{-14}{2(-1)}$
		2(-1)
	$=\frac{-14}{2(-1)}$	
	n = 7	✓value of n
	$\therefore T_7 = -(7)^2 + 14(7) - 7$	
	= 42	\checkmark Value of T ₇ (3)
		[7]

Copyright reserved

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Download more resources like this on ECOLEBOOKS.COM Math**DaimIoaded from Stanmorephysics.com** Marking Guideline FS/MARCH 2022

QUESTION 3

3.1.1	13;8;3;		
	a = 13 and $d = -5$	✓ d = -5	
	$T_n = a + (n-1)d$		
	$T_{50} = 13 + (50 - 1) - 5$	\checkmark substitution from the correct	
	$T_{50} = 57$	formula	~
3.1.2		✓Answer (:	3)
5.1.2	$S_n = \frac{n}{2} [2a + (n-1)d]$		
	$S_{50} = \frac{50}{2} [2(13) + (50 - 1)(-5)]$	✓ Substitution from the correct	
	-	formula	
	$S_{50} = -5475$	✓Answer (2	2)
3.2	$S_n = a + (a + d) + (a + 2d) + + (I - 2d) + (I - d) + I(1)$	✓equation 1 and 2	
	$S_n = I + (I - d) + (I - 2d) +(a + 2d) + (a + d) + a(2)$		
	$2S_n = (a+I) + (a+1) + (a+I) +(a+I) + (a+I) + (a+I)$		
	$\therefore 2S_n = n(a+1)$	$\checkmark 2S_n = n(a+I)$	
	$\therefore S_n = \frac{n}{2}(a+1)$	✓ dividing by 2	
	$\therefore S_n = \frac{n}{2} [a + a + (n - 1)d]$	✓ substitution of 1	
	$\therefore S_n = \frac{n}{2} [2a + (n-1)d]$	(4	4)
3.3.1	$3+m+\frac{m^2}{3}+\frac{m^3}{9}+$		
	$r = \frac{m}{3}$	$\checkmark r = \frac{m}{3}$	
	-1 <r<1< td=""><td></td><td></td></r<1<>		
	-1 < r < 1 $-1 < \frac{m}{3} < 1$ -3 < m < 3	\checkmark substitution of r	
	-3 <m<3< td=""><td>✓Answer (3</td><td>3)</td></m<3<>	✓Answer (3	3)
	at reserved	1	

Copyright reserved

FS/MARCH 2022

Math**Daimloaded from Stanmorephysics.com** Marking Guideline

	Marking Guideline	· · · · · · · · · · · · · · · · · · ·
3.3.2	$S_{\infty} = \frac{a}{1-r}$ $\frac{27}{7} = \frac{3}{1-\frac{m}{3}}$	✓ substitution
	$27 - \frac{27m}{3} = 21$ 27 - 9m = 21 6 = 9m $\therefore m = \frac{6}{9} = \frac{2}{3} = 0,67$	✓ simplification ✓ Answer (3)
3.4	$\sum_{r=1}^{n} 5 \cdot 2^{1-r} = 5 + \frac{5}{2} + \frac{5}{4} + \dots$ $S_{n} = \frac{a(1-r^{n})}{1-r}$ $\frac{630}{64} = \frac{5\left[1 - \left(\frac{1}{2}\right)^{n}\right]}{1 - \frac{1}{2}}$	✓ expansion to THREE terms ✓ $a = 2$ and $r = \frac{1}{2}$ ✓ subst into the correct formula
	$\frac{63}{64} = 1 - \left(\frac{1}{2}\right)^{n}$ $\therefore \left(\frac{1}{2}\right)^{n} = \frac{1}{64}$ $\left(\frac{1}{2}\right)^{n} = \left(\frac{1}{2}\right)^{6}$ n = 6	✓ simplification: $\frac{63}{64} = 1 - \left(\frac{1}{2}\right)^n$ ✓ same bases: $\left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^6$ ✓ answer (6)
		[21]

Download more resources like this on ECOLEBOOKS.COM Mathemannloaded from Stanmorephysics.com Marking Guideline

4.1.1		
	y 5 θ 4 x	√diagram
	$r^{2} = x^{2} + y^{2}$ $r^{2} = (4)^{2} + (3)^{2}$ r = 5	✓ r = 5
	$\sin\theta = \frac{3}{5}$	✓ Answer (3)
4.1.2	$\cos^{2}(90^{\circ} - \theta) - 1$ $= \sin^{2} \theta - 1$ $(3)^{2}$	$\checkmark \cos(90^\circ - \theta) = \sin \theta$
	$= \left(\frac{3}{5}\right)^2 - 1$ $= \frac{-16}{25}$	✓Answer (2)
4.1.3	$1 - \sin 2\theta$ = 1 - 2 sin $\theta \cos \theta$	✓ double angle
	$=1-2\left(\frac{3}{5}\right)\left(\frac{4}{5}\right)$ $=\frac{1}{1-3}$	✓ substitution
	25	✓Answer (3)
4.2	$\frac{\sin^2(90^\circ + \alpha) + \sin(180^\circ + \alpha)\sin(-\alpha)}{\sin 180^\circ - \tan 135^\circ}$	
	$=4\sin\theta\cos\theta=\frac{\cos^2\alpha+(-\sin\alpha)(-\sin\alpha)}{0-(-\tan45^\circ)}$	$\checkmark \cos^2 \alpha$ $\checkmark -\sin \alpha$
	$=\frac{\cos^2\alpha+\sin\alpha\sin\alpha}{0+1}$	$\checkmark \sin^2 \alpha$
	$\cos^2 \alpha + \sin^2 \alpha$	$\checkmark \cos^2 \alpha + \sin^2 \alpha = 1$
	=	✓Answer (5)
	-	

Math**Davinloaded** from Stanmorephysics.com Marking Guideline

FS/MARCH 2022

4.3	$\sin 2\theta + \cos(2\theta - 90^\circ)$			
	$=\sin 2\theta + \sin 2\theta$	$\checkmark \sin 2\theta$		
	$= 2(2\sin\theta\cos\theta)$	$\checkmark 2\sin\theta\cos\theta$		
	$=4\sin\theta\cos\theta$	✓Answer (3)		
4.4	$20^{\sin x} + 20^{\sin x+1} = 420$ for $-360^{\circ} \le x \le 360^{\circ}$			
	$\therefore 20^{\sin x} (1+20) = 420$	\checkmark split into a product of 2 bases		
	$\therefore 20^{\sin x} = 20$	 ✓ simplification / factorisation ✓ dividing by 21 		
	$\therefore \sin x = 1$	✓ equating exponents		
	$x = 90^{\circ} \text{ ref } \angle$	\checkmark both solutions		
	$x = -270^{\circ} \text{ or } x = 90^{\circ}$	(5)		
		[21]		

Download more resources like this on ECOLEBOOKS.COM Math**Dation Ioaded from Stanmorephysics.com** Marking Guideline FS/MARCH 2022

5.1	D A C			
	STATEMENT	REASON		
5.1.1	$B_4=D_2=30^\circ$	$\angle s$ opp = sides (OB = D0) radii	✓S and R	
	$\therefore O_1 = 120^{\circ}$	Sum of $\angle's$ of \triangle	✓S and R	(2)
5.1.2	$\hat{A} = 60^{\circ}$	\angle at centre = 2 × \angle at the circum.	$\checkmark \hat{A} = 60^{\circ}$	
			√R	(2)
5.1.3	C =120°	opp. $\angle's$ of a cyclic quad	✓ C = 120°	
			✓R	(2)
5.1.4	ADB = 70°	tan-chord theorem	✓ ADB = 70°	
			√R	(2)
				[8]

Math**DaimIoaded from Stanmorephysics.com** Marking Guideline

	$\begin{array}{c} 45 \\ 60 \\ E \\ \hline 20 \\ \hline \end{array}$			
	STATEMENT	REASON		
6.1	$\frac{BG}{60} = \frac{60}{45}$	Line $\overline{\ }$ one side of Δ	✓S ✓R	
	BG = 80		✓ BG = 80	
	∴ BF = 60		√answer	(4)
6.2	$\frac{ED}{60} = \frac{20}{80}$	Line $\overline{\ }$ one side of Δ	✓S ✓R	
	∴ ED =15		√answer	(3)
6.3	Area of $\triangle ABC = \frac{1}{2}AB.AC \sin B$		\checkmark AB = 60 + 45	
	$=\frac{1}{2}(60+45)(60+20+60)\sin 30^\circ$		\checkmark AC = 60 + 20 + 60)
			✓ substitution of Area	
	= 3675units ²		✓Answer	(4)
				[11]

Download more resources like this on ECOLEBOOKS.COM Math**Dation Ioaded from Stanmorephysics.com** Marking Guideline

FS/MARCH 2022

	B			
	STATEMENT	REASON		
7.1		tangent-chord theorem	√Rea	
				(1)
7.2	In \triangle ABC and \triangle ADB			
	$\hat{A}_1 = \hat{A}_1$	common	√S	
	$\hat{B}_1 = \hat{D}_1$	proven	✓S	
	$\therefore \Delta ABC \Delta ADB$	∠;∠;∠	√R	(3)
7.3	$\hat{E}_2 = \hat{F}_1$	alternate ∠s; EA ∥ GF	√S	√R
	$\hat{F}_1 = \hat{D}_2$	ext \angle of cyc quad DGFC		
	$\therefore \hat{E}_2 = \hat{D}_2$		√S	√R
				(4)
7.4	In \triangle AEC and \triangle ADE :			
	$\hat{A}_2 = \hat{A}_2$	Common	√S	
	$\hat{\mathbf{E}}_2 = \hat{\mathbf{D}}_2$	proven	√S	
		∠;∠;∠		
	$\therefore \frac{AE}{AD} = \frac{AC}{AE}$	from Δs	√S	
	$\therefore AE^{2} = AD \times AC$ $\therefore AE = \sqrt{AD \times AC}$			swer
				(4)
				[12]