GAUTENG DEPARTMENT OF EDUCATION

JOHANNESBURG NORTH DISTRICT

2021 GRADE 12 CONTROL TEST

MATHEMATICS TERM1

MARKS : 100

TIME : 2 hours

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 9 questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, etc. which was used in determining the answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. Use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. Where necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. ANSWER Question 7 on Annexure 7.1 7.2.2
- 9. ANSWER Question 8 on Annexure 8.1 8.1.3
- 10. ANSWER Question 9 on Annexure 9.1 9.2
- 11. Tear off page 12 till page 17. AND SUBMIT theses pages with your answer scripts.
- **12.** An **information sheet** is on page 11 of the question paper.
- 13. Number the questions correctly according to the numbering used in the question paper.
- 14. Write neatly and legibly.

QUESTION 1

1.1 Solve for x:

1.1.1
$$(x-5)(x+1) = 0$$
 (2)

1.1.2
$$2x^2 - 11x + 7 = 0$$
 (correct to two decimal places) (3)

$$1.1.3 \quad x - 5x^{\frac{1}{2}} = -6 \tag{4}$$

1.2 Calculate
$$a$$
 and b if $\sqrt{\frac{5^{2014} - 5^{2012}}{6}} = a(5^b)$ and a is not a multiple of 5. (4)

1.3 Solve for x and y:

$$1 = 3y - x \text{ and } y^2 + 2xy = 3x^2 - 7 \tag{7}$$

[20]

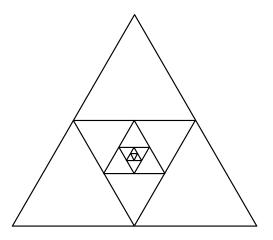
QUESTION 2

Given the arithmetic series: $3 + 10 + 17 + \dots + 150$.

- 2.1 Write down the fourth term in the series. (1)
- 2.2 Determine the general term of the series. (2)
- 2.3 Express the series in sigma notation. (1)

[4]

QUESTION 3

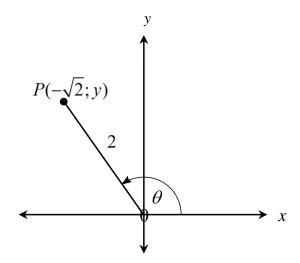

- 3.1 Consider the progression: 3; $\frac{1}{2}$; 3; $\frac{4}{10}$; 3; $\frac{16}{50}$;......
 - 3.1.1 Write down the next TWO terms of the progression. (1)
 - 3.1.2 Calculate the sum of the first thirty-five terms of the progression. (5)

3.2 Calculate:
$$\sum_{n=3}^{\infty} 5(3)^{1-n}$$
 (4)

[10]

QUESTION 4

In the diagram below, the 1^{st} (outer) triangle is an equilateral triangle with sides of 8cm. A 2^{nd} triangle is drawn within this triangle by joining the midpoints of the sides of the 1^{st} triangle. This process is continued without end.


- 4.1 What his the perimeter of the 4^{th} triangle? (2)
- 4.2 Whats is the perimeter of the n^{th} triangle? (3)

[5]

QUESTION 5

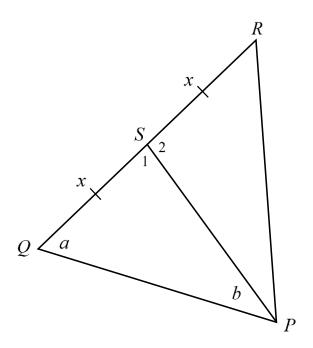
5.1 In the sketch below, P is a point on the Cartesian plane, with $P\hat{O}X = \theta$.

Use the sketch to determine the following:

5.1.1 The value of y. (2)

5.1.2 The value of
$$\frac{2\sin\theta\cos\theta}{\cos^2\theta - 1}$$
 (5)

5.2 Simplify the following, WITHOUT USING A CALCULATOR:


$$\frac{\cos(180^{\circ} + \theta) \cdot \tan(720^{\circ} - \theta) \cdot \sin^{2}(90^{\circ} - \theta)}{\sin(180^{\circ} - \theta)} + \sin^{2}\theta \tag{7}$$

5.3 If $6\sin^2\theta - 4\cos^2\theta = -5\sin\theta \cdot \cos\theta$, determine the general solution for θ . (8)

[22]

QUESTION 6

In the sketch below, PS is the median of $\triangle PQR$, and thus QS = SR = x. $\hat{Q} = a$ and $Q\hat{P}S = b$.

6.1 Show that
$$PS = \frac{x \sin a}{\sin b}$$
 (2)

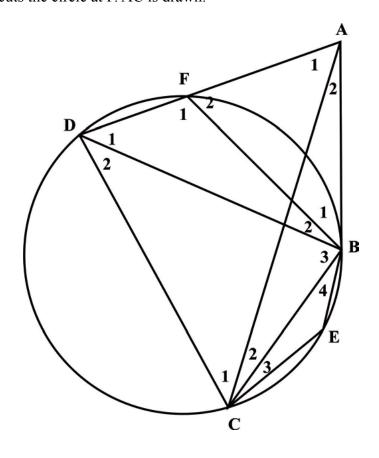
Express the size of
$$S_2$$
, in terms of a and b , without reasons. (1)

6.3 Hence, show that: Area of
$$\triangle PSR = \frac{x^2 sina \times sin(a+b)}{2sinb}$$
 (3)

6.4 Determine the area of $\triangle PSR$, rounded to two decimal places, if x = 14,2cm, $a = 34^{\circ}$ and

$$b = 41^{\circ}. \tag{3}$$

[9]


Give reasons for your statements and calculations in QUESTIONS 7, 8 and 9

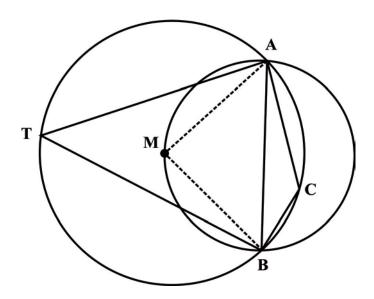
Use the Annexure's provided to answer QUESTIONS 7, 8 and 9

QUESTION 7

7.1 In the diagram below, AB is a tangent to the circle passing though B, E, C and D

AD cuts the circle at F. AC is drawn.

Give reasons for the following statements:

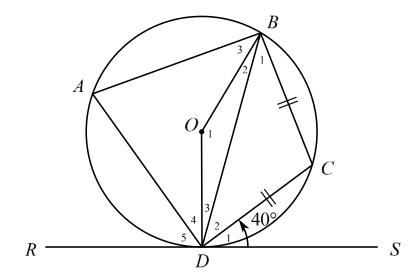

(5)

STATEMENT	REASONS
$\hat{C}_1 + \hat{C}_2 = \hat{F}_2$	
$\hat{D}_2 + \hat{E} = 180^\circ$	
$\hat{B}_1 = \hat{D}_1$	
$\hat{B}_2 + \hat{B}_3 + \hat{D}_1 + \hat{D}_2 = 180^\circ$	
$\hat{B}_2 + \hat{B}_1 = \hat{C}_1 + \hat{C}_2$	

7.2 In the diagram below, circle centre M intersects a second smaller circle at A and B.

A, C, B and T are points on circle M.

AB is the diameter of the smaller circle.


- 7.2.1 Determine the size of \hat{C} . (6)
- 7.2.2 Explain why AMBC is not a cyclic quadrilateral. (1)

[12]

QUESTION 8

In the figure below, RDS is a tangent to circle O at D. BC = DC, and $\hat{CDS} = 40^{\circ}$.

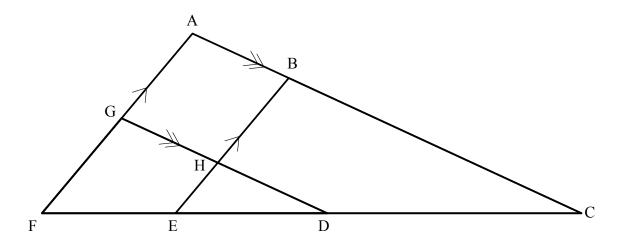
Thus, calculate the size of the following angles, with reasons.

$$8.1 B\hat{D}C (2)$$

$$8.2 \qquad \hat{C} \tag{2}$$

8.3
$$\hat{A}$$
 (2)

$$8.4 \qquad \hat{O}_1 \tag{1}$$


[7]

QUESTION 9

The diagram below is the top view design of a new railway system. There are eight stations being built and these are labelled with letters from A- H.You have been asked to do some calculations fro the railway company. As the engineer you know that:

• $AF \parallel BE \text{ and } AC \parallel GD$.

•
$$\frac{AB}{BC} = \frac{4}{7}$$
 and $\frac{AG}{AF} = \frac{9}{17}$.

9.1 Calculate

$$9.1.1 \quad \frac{FE}{FC}. \tag{3}$$

$$9.1.2 \quad \frac{CD}{DF}. \tag{2}$$

9.2 If the straight line distance of the track from F to C is 374 kilometres and its takes 50 hours to build one kilometre of the track, determine the number of hours it will take to build the section from E to D. (6)

[11]

TOTAL 100 MARKS

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1 + ni)$$

$$A = P(1 - ni)$$

$$A = P(1-i)^{\eta}$$

$$A = P(1 - ni)$$
 $A = P(1 - i)^n$ $A = P(1 + i)^n$

$$\sum_{i=1}^{n} 1 = n$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$T_n = a + (n-1)a$$

$$\sum_{i=1}^{n} 1 = n \qquad \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad T_n = a + (n-1)d \qquad S_n = \frac{n}{2}(2a + (n-1)d)$$

$$T_n = ar^{n-1}$$

$$T_n = ar^{n-1}$$
 $S_n = \frac{a(r^n - 1)}{r - 1}$; $r \neq 1$ $S_{\infty} = \frac{a}{1 - r}$; $-1 < r < 1$

$$S_{\infty} = \frac{a}{1}$$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$M\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In ΔABC:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$
 $area\Delta ABC = \frac{1}{2}ab \cdot \sin C$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin\alpha \cdot \cos\alpha$$

 $(x; y) \rightarrow (x \cos \theta - y \sin \theta; y \cos \theta + x \sin \theta)$

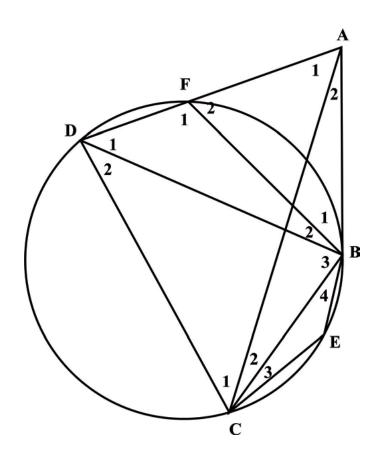
$$\bar{x} = \frac{\sum fx}{n}$$

$$\sigma^2 = \sum_{i=1}^n (x_i - \bar{x})^2$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

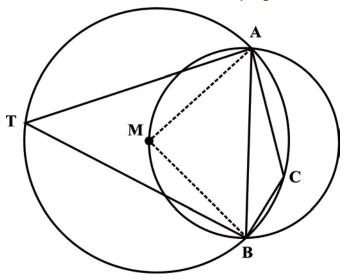

$$b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

Name:	Class:

ANNEXURE 7.1 - 7. 2 .2

QUESTION 7

7.1



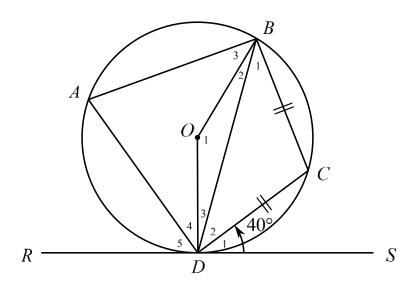
Give reasons for the following statements:

(5)

STATEMENT	REASONS
$\hat{C}_1 + \hat{C}_2 = \hat{F}_2$	
$\hat{D}_2 + \hat{E} = 180^\circ$	
$\hat{B}_1 = \hat{D}_1$	
$\hat{B}_2 + \hat{B}_3 + \hat{D}_1 + \hat{D}_2 = 180^\circ$	
$\hat{B}_2 + \hat{B}_1 = \hat{C}_1 + \hat{C}_2$	

7.2.1 Determine the size of \hat{C} .

(6)


7.2.2	Explain why AMBC is not a cyclic quadrilateral.	(1)

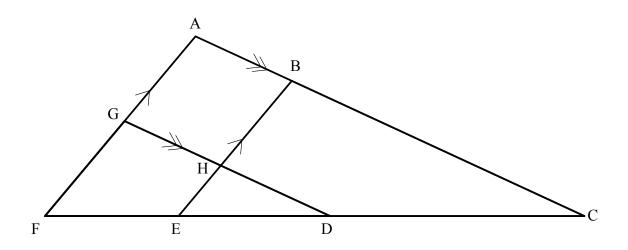
[12]

Class:_____

ANNEXURE 8.1 - 8.1.3

QUESTION 8

8.1	$B\hat{D}C$	(2))
	_		


8.2 \hat{C} (2)

8.3	Downloaded from Stanmorephysics.com \hat{A}	(2)
8.4	\hat{O}_1	(1)
		[7]

Class:____

ANNEXURE 9.1 - 9.2

QUESTION 9

9.1 Calculate

9.1.1
$$\frac{FE}{FC}$$
.

(3)

9.1.2	CD
	\overline{DF}

(2)

9.2 If the straight line distance of the track from F to C is 374 kilometres and its takes 50 hours			
	build one kilometre of the track, determine the number of hours it will take to build the section		
	from E to D. (6)		
_			
_			
_			
_			
_			
_			

[11]

GAUTENG DEPARTMENT OF EDUCATION

JOHANNESBURG NORTH DISTRICT

2021 GRADE 12 CONTROL TEST

MATHEMATICS TERM 1

MARKING GUIDELINES

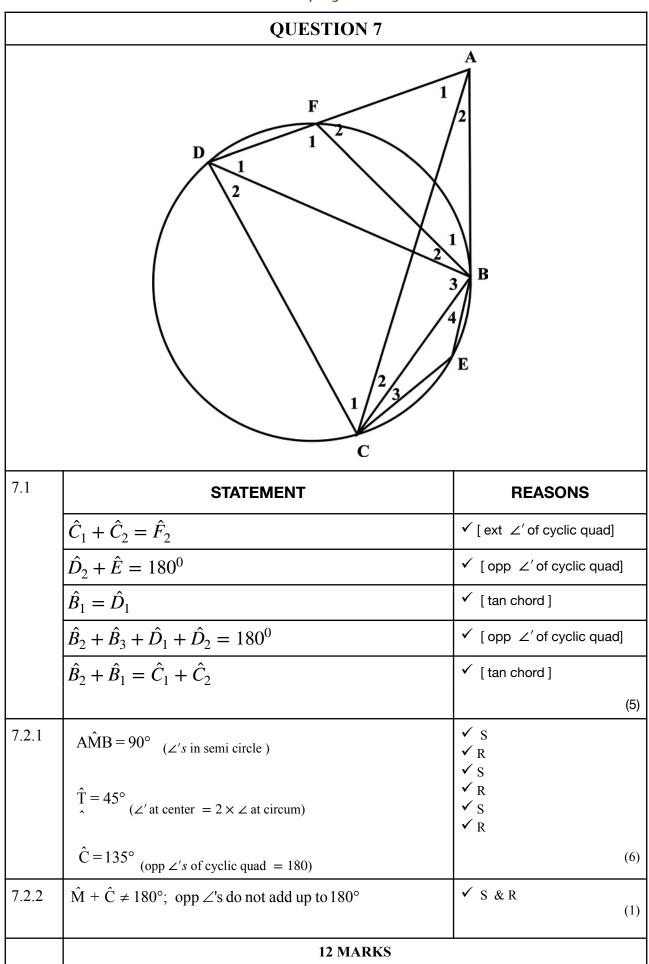
MARKS : 100

TIME : 2 hours

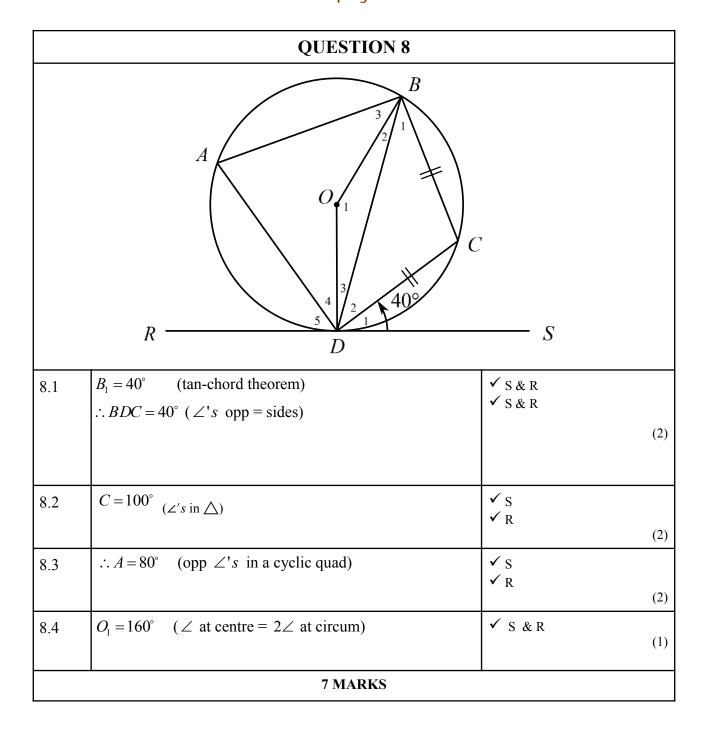
QUESTION 1			
1.1.1	(x-5)(x+1) = 0	$\checkmark x = 5$	
	x = 5 or x = -1	$\checkmark x = -1$	
			(2)
1.1.2	$2x^2 - 11x + 7 = 0$	✓ Sub	
		$\checkmark x = 4,77$	
	$x = \frac{-(-11) \pm \sqrt{(-11)^2 - 4(2)(7)}}{2(2)}$	$\checkmark x = 0.73$	
	2(2)		
	4.77		(3)
	x = 4,77 or x = 0,73		
1.1.3	$x - 5x^{\frac{1}{2}} = -6$	✓ Standard form	
	$x - 5x^{\frac{1}{2}} + 6 = 0$	✓ factors	
	Let $k^2 = x$ and $k = x^{\frac{1}{2}}$	✓ squaring	
	$\therefore k^2 - 5k + 6 = 0$	\checkmark x values	
	(k-3)(k-2) = 0		
	k = 3 or k = 2		
	But: $x^{\frac{1}{2}} = 3$ or. $x^{\frac{1}{2}} = 2$		(4)
	$(x^{\frac{1}{2}})^2 = (3)^2$ or $(x^{\frac{1}{2}})^2 = (2)^2$		` ´
	x = 9 or x = 4		
1.2	$\sqrt{5^{2014} - 5^{2012}}$	$\sqrt{1}\sqrt{\frac{5^{2012}.5^2-5^{2012}}{5^{2012}}}$	
	$\sqrt{\frac{3}{6}}$	$\sqrt{\frac{5}{6}}$	
	,	2012	
	$=\sqrt{\frac{5^{2012}.5^2-5^{2012}}{6}}$	$\sqrt{4.5^{2012}}$	
	γ 6	$\checkmark a = 2.$ $\checkmark . b = 1006$	
	$=\sqrt{\frac{5^{2012}(25-1)}{5^{2012}(25-1)}}$	\checkmark . $b = 1006$	
	$=\sqrt{\frac{6}{6}}$		(4)
	$=\sqrt{4.5^{2012}}$		(4)
	$= 2(5^{1006})$		
	$\therefore a = 2. \text{ and. } b = 1006$		
<u> </u>			

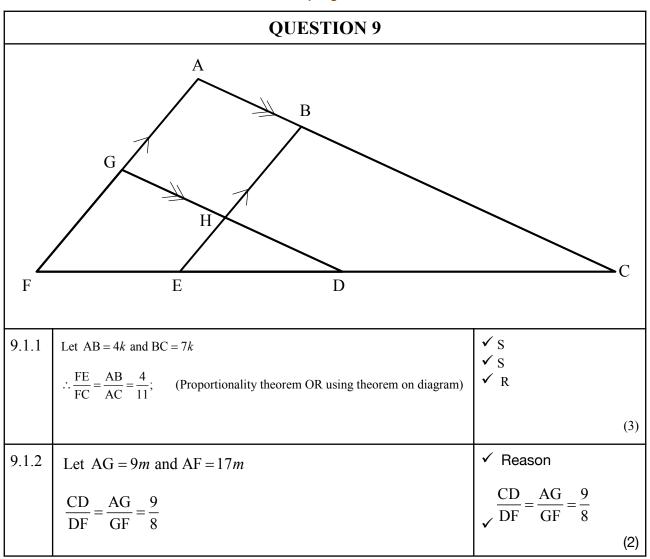
${\bf Downloaded\ from\ Stanmore physics.com}$

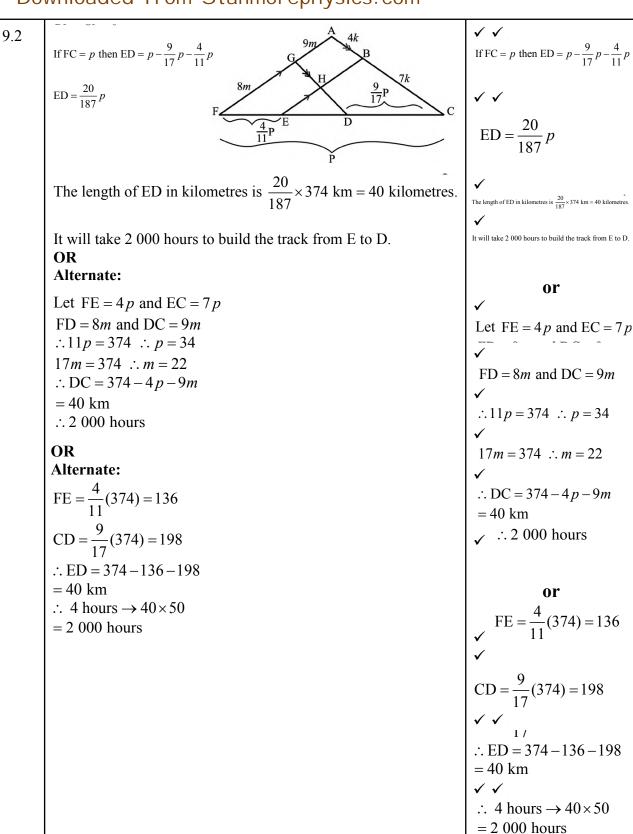
20 MARKS		
	$x = 2 \qquad \text{or} \qquad x = \frac{-8}{5}$	
	3	
	$x = 3(1) - 1$ or $x = 3(\frac{-1}{5}) - 1$	
	Sub y-values into (3)	(7)
	$y = 1 \text{or} y = \frac{-1}{5}$	
	0 = (y - 1)(5y + 1)	
	$0 = 5y^2 - 4y - 1$	✓ x-values
	$0 = 20y^2 - 16y - 4$	✓ y-values
	$y^2 + 6y^2 - 2y = 27y^2 - 18y + 3 - 7$	Factors
	$y^2 + 2y(3y - 1) = 3(3y - 1)^2 - 7$	
	Sub (3) into (2)	✓ Standard form
	$x = 3y - 1 \dots (3)$	✓ Simplification
	$y^2 + 2xy = 3x^2 - 7 \dots (2)$	✓ Sub
1.3	$1 = 3y - x \dots (1)$	✓ Equation 3


QUESTION 2			
2.1	$T_n = 24$	✓Ans	
			(1)
2.2	$T_n = 3 + (n-1)(7)$ $T_n = 7n - 4$	✓ Sub	
	$T_n = 7n - 4$	✓ Ans	
			(2)
2.3	$\sum_{k=1}^{22} (7k - 4)$	✓:Ans	
	k=1		(1)
4 MAKRS			

QUESTION 3			
3.1.1	$3; \frac{64}{250}$	✓ Ans	(1)
3.1.2	$3 \times 18 = 54$ $S_{17} = \frac{\frac{1}{2} \left[\left(\frac{4}{5} \right)^{17} - 1 \right]}{\left(\frac{4}{5} \right) - 1}$	✓ Odd terms ✓ Sub ✓ $2,44$ ✓ ✓ $S_{35} = 56,44$	
	$= 2,44$ $\therefore S_{35} = 56,44$	(5	(5)
3.2	$T_1 = \frac{5}{9}$ $T_2 = \frac{5}{27}$ $\therefore r = \frac{1}{3}$	✓ a ✓ r ✓ Sub ✓ Ans	
	$\therefore r = \frac{1}{3}$ $S_{\infty} = \frac{\frac{5}{9}}{1 - \frac{1}{3}}$ $= \frac{5}{6} \text{ or } 0.83$		(4)
10 MARKS			


	QUESTION 4			
4.1	3cm	✓ ✓ Ans		
			(2)	
4.2	24; 12; 6; 3	✓ : Sequence		
	$r=\frac{1}{2}$	✓ ratio		
	2	✓ Ans		
	$T_n = 24(\frac{1}{2})^{n-1}$		(3)	
	5 MAKRS			


5.1.1 $y^{2} = (2)^{2} - (-\sqrt{2})^{2}$ $y = \sqrt{2}$ $y = $		QUESTION 5		
5.1.2 $\frac{2\left(\frac{\sqrt{2}}{2}\right)\left(-\frac{\sqrt{2}}{2}\right)}{\left(-\frac{\sqrt{2}}{2}\right)^2 - 1} = \frac{2\left(-\frac{1}{2}\right)}{\frac{1}{2} - 1} = 2$ $\frac{2\left(\frac{\sqrt{2}}{2}\right)\left(-\frac{\sqrt{2}}{2}\right)^2 - 1}{\frac{1}{2} - 1} = 2$ $\frac{2\left(-\frac{\sqrt{2}}{2}\right)^2 - 1}{\frac{2}}{\frac{1}{2} - 1} = 2$ $\frac{2\left(-\frac{\sqrt{2}}{2}\right)^2 - 1}{\frac{1}{2} - 1} = 2$ $\frac{2\left(-\frac{\sqrt{2}}{2}\right)^2 - 1}{\frac{1}{2} - 1} = 2$ $\frac{2\left(-\frac{\sqrt{2}}{2}\right)^2 - 1}{\frac{2}{2}} = 2$ $\frac{2\left(-\frac{\sqrt{2}}{2}\right)^2 - 1}{\frac{2}}{\frac{2}} = 2$ $\frac{2\left(-\frac{\sqrt{2}}{2}\right)^2 - 1}{\frac{2}{2}} = 2$ $\frac{2\left(-\frac{\sqrt{2}}{2}\right)^2 - 1}{\frac{2}}{\frac{2}} = 2$ $2\left(-$	5.1.1	$y^2 = (2)^2 - (-\sqrt{2})^2$	✓ method	
$ \frac{2\left(\frac{\sqrt{2}}{2}\right)\left(-\frac{\sqrt{2}}{2}\right)^{2}-1}{\left(-\frac{\sqrt{2}}{2}\right)^{2}-1} = \frac{2\left(-\frac{1}{2}\right)}{\frac{1}{2}-1} = 2 $ $ \frac{\cos(180^{\circ}+\theta)\cdot\tan(720^{\circ}-\theta)\cdot\sin^{2}(90^{\circ}-\theta)}{\sin(180^{\circ}-\theta)} + \sin^{2}\theta \qquad \checkmark -\cos\theta \\ = \frac{\cos\theta\times-\tan\theta\times\cos^{2}\theta}{\sin\theta} + \sin^{2}\theta \qquad \checkmark \cos^{2}\theta \\ = \frac{\cos\theta\times\frac{\sin\theta}{\cos\theta}\times\cos^{2}\theta}{\sin\theta} + \sin^{2}\theta \qquad \checkmark \cos^{2}\theta + \sin^{2}\theta \\ = \frac{\cos\theta\times\sin\theta}{\sin\theta} + \sin^{2}\theta \qquad \checkmark \cos^{2}\theta + \sin^{2}\theta \\ = \cos^{2}\theta+\sin^{2}\theta = 1 $ $ 5.3 6\sin^{2}\theta-5\sin\theta\cos\theta-4\cos^{2}\theta=0 \\ (2\sin\theta-\cos\theta)(3\sin\theta+4\cos\theta)=0 \qquad \checkmark \text{factors} $ $\therefore 2\sin\theta=\cos\theta \\ \therefore \tan\theta = \frac{1}{2} \qquad \checkmark \tan\theta \\ \text{Ref} \angle = 26,57^{\circ} \\ \therefore \theta = 26,57^{\circ} + n180^{\circ} $ OR: $\theta = 180^{\circ} + 26,57^{\circ} + n180^{\circ} $ $\therefore \theta = 206,57^{\circ} + n180^{\circ} $ $\therefore \theta = 206,57^{\circ} + n180^{\circ} $ $\therefore \theta = 206,57^{\circ} + n180^{\circ} $ $\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ} $ $\theta = 126,87^{\circ} + n180 $ OR: $\theta = 126,87^{\circ} + n180$ $\theta = 126,87^{\circ} + n180$ $\Rightarrow \text{solution}$		$y = \sqrt{2}$	✓ Answer	
$ \frac{2\left(\frac{\sqrt{2}}{2}\right)\left(-\frac{\sqrt{2}}{2}\right)^{2}-1}{\left(-\frac{\sqrt{2}}{2}\right)^{2}-1} = \frac{2\left(-\frac{1}{2}\right)}{\frac{1}{2}-1} = 2 $ $ \frac{\cos(180^{\circ}+\theta)\cdot\tan(720^{\circ}-\theta)\cdot\sin^{2}(90^{\circ}-\theta)}{\sin(180^{\circ}-\theta)} + \sin^{2}\theta \qquad \checkmark -\cos\theta \\ = \frac{\cos\theta\times-\tan\theta\times\cos^{2}\theta}{\sin\theta} + \sin^{2}\theta \qquad \checkmark \cos^{2}\theta \\ = \frac{\cos\theta\times\frac{\sin\theta}{\cos\theta}\times\cos^{2}\theta}{\sin\theta} + \sin^{2}\theta \qquad \checkmark \cos^{2}\theta + \sin^{2}\theta \\ = \frac{\cos\theta\times\sin^{2}\theta-5\sin\theta\cos\theta-4\cos^{2}\theta=0}{(2\sin\theta-\cos\theta)(3\sin\theta+4\cos\theta)=0} \qquad \checkmark \cot\theta \\ \therefore 2\sin\theta=\cos\theta \\ \therefore \tan\theta = \frac{1}{2} \qquad \checkmark \tan\theta \\ \text{Ref} \angle = 26,57^{\circ} + n180^{\circ} \\ \text{OR:} \qquad \theta = 180^{\circ} + 26,57^{\circ} + n180^{\circ} \\ \therefore \sin\theta = -4\cos\theta \\ \therefore \tan\theta = -\frac{4}{3} \qquad \checkmark \sin\theta \\ \text{Ref} \angle = 53,13^{\circ} \qquad \checkmark \text{solution} $ $ \frac{2\left(\frac{\sqrt{2}}{2}\right)^{2}-1}{\frac{1}{2}-1} = 2 $ $ \frac{\sqrt{\sin\theta}}{\sin(180^{\circ}-\theta)} + \sin^{2}(\theta)^{\circ} - \theta}{\sin^{2}\theta} + \sin^{2}\theta \qquad \checkmark \cos^{2}\theta + \sin^{2}\theta \\ \checkmark \cos^{2}\theta + \sin^{2}\theta \qquad \checkmark \cos^{2}\theta + \sin^{2}\theta \\ \checkmark \cos^{2}\theta + \sin^{2}\theta \qquad \checkmark \cos^{2}\theta + \sin^{2}\theta \\ \checkmark \cos^{2}\theta + \sin^{2}\theta \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\cos^{2}\theta + \sin^{2}\theta} = 1 $ $ \frac{\sqrt{20}}{\cos^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} = 1 $ $ \frac{\sqrt{20}}{\cos^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta + \sin^{2}\theta} \qquad \checkmark \cot^{2}\theta = 0 $ $ \frac{\sqrt{20}}{\sin^{2}\theta + \sin^{2}\theta + \sin^{2}\theta + \sin^{2}\theta + \sin^{2}\theta = 0 $				(2
5.2 $\frac{\cos(180^{\circ} + \theta) \cdot \tan(720^{\circ} - \theta) \cdot \sin^{2}(90^{\circ} - \theta)}{\sin(180^{\circ} - \theta)} + \sin^{2}\theta$ $= \frac{-\cos\theta \times -\tan\theta \times \cos^{2}\theta}{\sin\theta} + \sin^{2}\theta$ $= \frac{\cos\theta \times \frac{\sin\theta}{\cos\theta} \times \cos^{2}\theta}{\sin\theta} + \sin^{2}\theta$ $= \frac{\cos\theta \times \frac{\sin\theta}{\cos\theta} \times \cos^{2}\theta}{\sin\theta} + \sin^{2}\theta$ $= \cos^{2}\theta + \sin^{2}\theta = 1$ 5.3 $\frac{\sin^{2}\theta - 5\sin\theta\cos\theta - 4\cos^{2}\theta = 0}{(2\sin\theta - \cos\theta)(3\sin\theta + 4\cos\theta) = 0}$ $\therefore 2\sin\theta = \cos\theta$ $\therefore \tan\theta = \frac{1}{2}$ $Ref \angle = 26,57^{\circ}$ $\therefore \theta = 26,57^{\circ} + n180^{\circ}$ $OR:$ $\theta = 180^{\circ} + 26,57^{\circ} + n180^{\circ}$ $\therefore \theta = 206,57^{\circ} + n180^{\circ}$ $AND:$ $3\sin\theta = -4\cos\theta$ $\therefore \tan\theta = -\frac{4}{3}$ $Ref \angle = 53,13^{\circ}$ $\theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $OR:$ $\theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $OR:$ $\theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $\Rightarrow \text{Solution}$ $\Rightarrow \text{Solution}$	5.1.2	$\frac{2\left(\frac{\sqrt{2}}{2}\right)\left(-\frac{\sqrt{2}}{2}\right)}{\left(-\frac{\sqrt{2}}{2}\right)^2} = \frac{2\left(-\frac{1}{2}\right)}{1} = 2$	√sign	
$\sin(180^{\circ} - \theta)$ $= \frac{-\cos\theta \times -\tan\theta \times \cos^{2}\theta}{\sin\theta} + \sin^{2}\theta$ $= \frac{\cos\theta \times \frac{\sin\theta}{\cos\theta} \times \cos^{2}\theta}{\sin\theta} + \sin^{2}\theta$ $= \cos^{2}\theta + \sin^{2}\theta + \sin^{2}\theta$ $= \cos^{2}\theta + \sin^{2}\theta - 1$ $5.3 \qquad 6\sin^{2}\theta - 5\sin\theta \cos\theta - 4\cos^{2}\theta = 0$ $(2\sin\theta - \cos\theta)(3\sin\theta + 4\cos\theta) = 0$ $\therefore 2\sin\theta = \cos\theta$ $\therefore \tan\theta = \frac{1}{2}$ $Ref \angle = 26,57^{\circ}$ $\therefore \theta = 26,57^{\circ} + n180^{\circ}$ $OR:$ $\theta = 180^{\circ} + 26,57^{\circ} + n180^{\circ}$ $\therefore \sin\theta = -4\cos\theta$ $\therefore \tan\theta = -\frac{4}{3}$ $Ref \angle = 53,13^{\circ}$ $\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $OR:$ $\Rightarrow \cos\theta = \cos\theta$ $\Rightarrow \sin\theta = -4\cos\theta$ $\Rightarrow \sin\theta = -4\cos\theta$ $\Rightarrow \cos\theta = \cos\theta$ $\Rightarrow \cos\theta = \cos\theta$ $\Rightarrow \sin\theta = -4\cos\theta$ $\Rightarrow \sin\theta = -4\cos\theta$ $\Rightarrow \cos\theta = \cos\theta$ $\Rightarrow \cos\theta = \cos\theta$ $\Rightarrow \cos\theta = \cos\theta$ $\Rightarrow \cos\theta = \cos\theta$ $\Rightarrow \sin\theta = \cos\theta$ $\Rightarrow \tan\theta$ $\Rightarrow \cos\theta$ $\Rightarrow \sin\theta$ $\Rightarrow \cos\theta$ \Rightarrow		$\left(-\frac{\sqrt{2}}{2}\right)$ -1 $\frac{1}{2}$ -1		(5
$ \frac{-\cos\theta \times -\tan\theta \times \cos^2\theta}{\sin\theta} + \sin^2\theta \qquad \qquad \checkmark \cos^2\theta \\ = \frac{-\cos\theta \times -\tan\theta \times \cos^2\theta}{\sin\theta} + \sin^2\theta \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \frac{\cos\theta \times \frac{\sin\theta}{\cos\theta} \times \cos\theta}{\sin\theta} + \sin^2\theta \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \sin^2\theta) \\ = \cos^2\theta + \sin^2\theta = 1 \qquad \qquad \checkmark (\cos^2\theta + \cos^2\theta + \cos^2\theta$	5.2	$\cos(180^{\circ} + \theta) \cdot \tan(720^{\circ} - \theta) \cdot \sin^{2}(90^{\circ} - \theta)$	$\sqrt{-\cos\theta}$	
$= \frac{-\cos\theta \times -\tan\theta \times \cos^2\theta}{\sin\theta} + \sin^2\theta$ $= \frac{\cos\theta \times \frac{\sin\theta}{\cos\theta} \times \cos^2\theta}{\sin\theta} + \sin^2\theta$ $= \cos^2\theta + \sin^2\theta = 1$ $= \cos^2\theta + \sin^2\theta + \sin^2\theta = 1$ $= \cos^2\theta + \sin^2\theta + \sin^$		$\frac{\sin(180^{\circ} - \theta)}{\sin(180^{\circ} - \theta)}$		
$=\frac{\cos\theta \times \frac{\sin\theta}{\cos\theta} \times \cos^2\theta}{\sin\theta} + \sin^2\theta$ $=\cos^2\theta + \sin^2\theta = 1$ $5.3 \qquad \frac{6\sin^2\theta - 5\sin\theta\cos\theta - 4\cos^2\theta = 0}{(2\sin\theta - \cos\theta)(3\sin\theta + 4\cos\theta) = 0}$ $\therefore 2\sin\theta = \cos\theta$ $\therefore \tan\theta = \frac{1}{2}$ $Ref \angle = 26,57^{\circ}$ $\therefore \theta = 26,57^{\circ} + n180^{\circ}$ $OR:$ $\theta = 180^{\circ} + 26,57^{\circ} + n180^{\circ}$ $AND:$ $3\sin\theta = -4\cos\theta$ $\therefore \tan\theta = \frac{4}{3}$ $Ref \angle = 53,13^{\circ}$ $\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $OR:$ $\theta = 126,87^{\circ} + n180$ $OR:$ $\Rightarrow \text{Solution}$ $\Rightarrow \text{Solution}$				
$=\frac{\cos\theta \times \frac{\sin\theta}{\cos\theta} \times \cos^2\theta}{\sin\theta} + \sin^2\theta$ $=\cos^2\theta + \sin^2\theta = 1$ 5.3 $6\sin^2\theta - 5\sin\theta\cos\theta - 4\cos^2\theta = 0$ $(2\sin\theta - \cos\theta)(3\sin\theta + 4\cos\theta) = 0$ $\therefore 2\sin\theta = \cos\theta$ $\therefore \tan\theta = \frac{1}{2}$ $Ref \angle = 26,57^\circ$ $\therefore \theta = 26,57^\circ + n180^\circ$ OR: $\theta = 180^\circ + 26,57^\circ + n180^\circ$ $\Rightarrow \sin\theta = -4\cos\theta$ $\therefore \tan\theta = -\frac{4}{3}$ $Ref \angle = 53,13^\circ$ $\therefore \theta = 180^\circ - 53,13^\circ + n180^\circ$ $\theta = 126,87^\circ + n180$ OR: $\theta = 126,87^\circ + n180$ $\Rightarrow \text{Solution}$ $\Rightarrow \text{Solution}$ $\Rightarrow \text{Solution}$		$=\frac{\cos\theta}{\sin\theta} + \sin^2\theta$	$\checkmark \sin \theta$	
$= \cos^{2}\theta + \sin^{2}\theta = 1$ $5.3 \qquad 6\sin^{2}\theta - 5\sin\theta\cos\theta - 4\cos^{2}\theta = 0$ $(2\sin\theta - \cos\theta)(3\sin\theta + 4\cos\theta) = 0$ $\therefore 2\sin\theta = \cos\theta$ $\therefore \tan\theta = \frac{1}{2}$ $Ref \angle = 26,57^{\circ}$ $\therefore \theta = 26,57^{\circ} + n180^{\circ}$ $OR:$ $\theta = 180^{\circ} + 26,57^{\circ} + n180^{\circ}$ $\therefore \theta = 206,57^{\circ} + n180^{\circ}$ $AND:$ $3\sin\theta = -4\cos\theta$ $\therefore \tan\theta = -\frac{4}{3}$ $Ref \angle = 53,13^{\circ}$ $\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $OR:$ $\Rightarrow \text{Solution}$		$\cos\theta \times \frac{\sin\theta}{\cos\theta} \times \cos^2\theta$	✓ Identity: $\tan \theta$	
$= \cos^{2}\theta + \sin^{2}\theta = 1$ $5.3 \qquad 6\sin^{2}\theta - 5\sin\theta\cos\theta - 4\cos^{2}\theta = 0$ $(2\sin\theta - \cos\theta)(3\sin\theta + 4\cos\theta) = 0$ $\therefore 2\sin\theta = \cos\theta$ $\therefore \tan\theta = \frac{1}{2}$ $Ref \angle = 26,57^{\circ}$ $\therefore \theta = 26,57^{\circ} + n180^{\circ}$ $OR:$ $\theta = 180^{\circ} + 26,57^{\circ} + n180^{\circ}$ $\therefore \theta = 206,57^{\circ} + n180^{\circ}$ $AND:$ $3\sin\theta = -4\cos\theta$ $\therefore \tan\theta = -\frac{4}{3}$ $Ref \angle = 53,13^{\circ}$ $\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $OR:$ $\checkmark \text{ solution}$ $\checkmark \text{ solution}$ $\checkmark \text{ solution}$		$=\frac{\cos\theta}{\cos\theta} + \sin^2\theta$		
$5.3 \qquad 6\sin^2\theta - 5\sin\theta\cos\theta - 4\cos^2\theta = 0$ $(2\sin\theta - \cos\theta)(3\sin\theta + 4\cos\theta) = 0$ $\therefore 2\sin\theta = \cos\theta$ $\therefore \tan\theta = \frac{1}{2}$ $Ref \angle = 26,57^{\circ}$ $\therefore \theta = 26,57^{\circ} + n180^{\circ}$ $OR:$ $\theta = 180^{\circ} + 26,57^{\circ} + n180^{\circ}$ $\therefore \theta = 206,57^{\circ} + n180^{\circ}$ $AND:$ $3\sin\theta = -4\cos\theta$ $\therefore \tan\theta = -\frac{4}{3}$ $Ref \angle = 53,13^{\circ}$ $\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $OR:$ $\checkmark \text{ solution}$ $\checkmark \text{ solution}$ $\checkmark \text{ solution}$		$\sin \theta$	√ =1	
$(2\sin\theta - \cos\theta)(3\sin\theta + 4\cos\theta) = 0$ $\therefore 2\sin\theta = \cos\theta$ $\therefore \tan\theta = \frac{1}{2}$ $Ref \angle = 26,57^{\circ}$ $\therefore \theta = 26,57^{\circ} + n180^{\circ}$ $OR:$ $\theta = 180^{\circ} + 26,57^{\circ} + n180^{\circ}$ $\therefore \theta = 206,57^{\circ} + n180^{\circ}$ $AND:$ $3\sin\theta = -4\cos\theta$ $\therefore \tan\theta = -\frac{4}{3}$ $Ref \angle = 53,13^{\circ}$ $\theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $OR:$ $\checkmark \text{ solution}$ $\checkmark \sin\theta$ $\checkmark \sin\theta$ $\checkmark \sin\theta$		$=\cos^2\theta + \sin^2\theta = 1$		(
$(2\sin\theta - \cos\theta)(3\sin\theta + 4\cos\theta) = 0$ $\therefore 2\sin\theta = \cos\theta$ $\therefore \tan\theta = \frac{1}{2}$ $Ref \angle = 26,57^{\circ}$ $\therefore \theta = 26,57^{\circ} + n180^{\circ}$ $OR:$ $\theta = 180^{\circ} + 26,57^{\circ} + n180^{\circ}$ $\therefore \theta = 206,57^{\circ} + n180^{\circ}$ $AND:$ $3\sin\theta = -4\cos\theta$ $\therefore \tan\theta = -\frac{4}{3}$ $Ref \angle = 53,13^{\circ}$ $\theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $OR:$ $\checkmark \text{ solution}$ $\checkmark \sin\theta$ $\checkmark \sin\theta$ $\checkmark \sin\theta$	5.3	$6\sin^2\theta - 5\sin\theta\cos\theta - 4\cos^2\theta = 0$	<u>√=0</u>	
$\therefore \tan \theta = \frac{1}{2}$ $\operatorname{Ref} \angle = 26,57^{\circ}$ $\therefore \theta = 26,57^{\circ} + n180^{\circ}$ $\operatorname{OR:}$ $\theta = 180^{\circ} + 26,57^{\circ} + n180^{\circ}$ $\therefore \theta = 206,57^{\circ} + n180^{\circ}$ $\operatorname{AND:}$ $3\sin \theta = -4\cos \theta$ $\therefore \tan \theta = -\frac{4}{3}$ $\operatorname{Ref} \angle = 53,13^{\circ}$ $\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $\operatorname{OR:}$ $\checkmark \tan \theta$ $\checkmark \sin \theta$ $\checkmark \sin \theta$		$(2\sin\theta - \cos\theta)(3\sin\theta + 4\cos\theta) = 0$	✓ factors	
Ref ∠ = 26,57° ∴ θ = 26,57° + n180° OR: θ = 180° + 26,57° + n180° ∴ θ = 206,57° + n180° AND: $3 \sin \theta = -4 \cos \theta$ ∴ $\tan \theta = -\frac{4}{3}$ Ref ∠ = 53,13° ∴ θ = 180° - 53,13° + n180° $\theta = 126,87^{\circ} + n180$ OR: ✓ solution ✓ solution ✓ solution		$\therefore 2\sin\theta = \cos\theta$		
$\therefore \theta = 26,57^{\circ} + n180^{\circ}$ $OR:$ $\theta = 180^{\circ} + 26,57^{\circ} + n180^{\circ}$ $\therefore \theta = 206,57^{\circ} + n180^{\circ}$ $AND:$ $3\sin \theta = -4\cos \theta$ $\therefore \tan \theta = -\frac{4}{3}$ $Ref \angle = 53,13^{\circ}$ $\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $OR:$ $\checkmark \text{ solution}$ $\checkmark \text{ solution}$		$\therefore \tan \theta = \frac{1}{2}$	$\checkmark \tan \theta$	
OR: $\theta = 180^{\circ} + 26,57^{\circ} + n180^{\circ}$ $\therefore \theta = 206,57^{\circ} + n180^{\circ}$ AND: $3\sin \theta = -4\cos \theta$ $\therefore \tan \theta = -\frac{4}{3}$ Ref $\angle = 53,13^{\circ}$ $\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ OR: \checkmark solution \checkmark solution		$Ref \angle = 26,57^{\circ}$		
$\theta = 180^{\circ} + 26,57^{\circ} + n180^{\circ}$ $\therefore \theta = 206,57^{\circ} + n180^{\circ}$ $AND:$ $3\sin \theta = -4\cos \theta$ $\therefore \tan \theta = -\frac{4}{3}$ $Ref \angle = 53,13^{\circ}$ $\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $OR:$ $\checkmark \text{solution}$ $\checkmark \text{solution}$		$\therefore \theta = 26,57^{\circ} + n180^{\circ}$	✓solution	
$\therefore \theta = 206,57^{\circ} + n180^{\circ}$ $AND:$ $3\sin \theta = -4\cos \theta$ $\therefore \tan \theta = -\frac{4}{3}$ $Ref \angle = 53,13^{\circ}$ $\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $OR:$ $\checkmark \text{ solution}$ $\checkmark \text{ solution}$		OR:		
AND: $3\sin\theta = -4\cos\theta$ $\therefore \tan\theta = -\frac{4}{3}$ Ref $\angle = 53,13^{\circ}$ $\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ OR: $\checkmark \text{ solution}$		$\theta = 180^{\circ} + 26,57^{\circ} + n180^{\circ}$		
$3\sin\theta = -4\cos\theta$ $\therefore \tan\theta = -\frac{4}{3}$ $Ref \angle = 53,13^{\circ}$ $\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $OR:$ $\checkmark \tan\theta$ $\checkmark \text{solution}$		$\therefore \theta = 206,57^{\circ} + n180^{\circ}$	✓solution	
$\therefore \tan \theta = -\frac{4}{3}$ $\operatorname{Ref} \angle = 53,13^{\circ}$ $\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $\operatorname{OR:}$ $\checkmark \tan \theta$ $\checkmark \operatorname{solution}$				
$\therefore \tan \theta = -\frac{1}{3}$ $\operatorname{Ref} \angle = 53,13^{\circ}$ $\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ $\operatorname{OR:}$ $\checkmark \text{ solution}$		<u>.</u>	4. 0	
Ref $\angle = 53,13^{\circ}$ $\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$ $\theta = 126,87^{\circ} + n180$ OR: Solution Solution		$\therefore \tan \theta = -\frac{4}{3}$	$\checkmark \tan \theta$	
			✓solution	
OR:				
OR:		$\theta = 126,87^{\circ} + n180$	Vaclution	
$\theta = 360^{\circ} - 53,13^{\circ} + n180^{\circ}$		OR:	Solution	
		$\theta = 360^{\circ} - 53,13^{\circ} + n180^{\circ}$, -
$\therefore \theta = 306,87^{\circ} + n180^{\circ}$		$\therefore \theta = 306,87^{\circ} + n180^{\circ}$		(8


QUESTION 6		
6.1	$\frac{PS}{\sin a} = \frac{x}{\sin b}$ $\therefore PS = \frac{x \sin a}{\sin b}$	✓✓ method sine rule (2)
6.2	$S_2 = a + b$	✓accuracy (1)
6.3	$Area = \frac{1}{2}PS \times SR \sin S_2$ $= \frac{1}{2} \left(\frac{x \sin a}{\sin b} \right) (x) (\sin(a+b))$ $= \frac{x^2 \sin a \cdot \sin(a+b)}{2 \sin b}$	✓ method: Area rule ✓ ✓ sub in (3)
6.4	$Area = \frac{(14,2)^2 \times \sin(34^\circ) \times \sin(34^\circ + 41^\circ)}{2\sin(41^\circ)}$ $= 83,01cm^2$	✓ sub into formula ✓ answer (3)
9 MARKS		

Page 7

11 MARKS

(6)