

KWAZULU-NATAL PROVINCE

EDUCATION
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS

COMMON TEST

APRIL 2021

MARKS: 100

TIME: 2 hours

N.B. This question paper consists of 6 pages, an answer sheet, 1 diagram sheet and an information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 7 questions.
- 2. Answer ALL questions.
- Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in 3. determining your answers.
- 4. Answers only will not necessarily be awarded full marks.
- An approved scientific calculator (non-programmable and non-graphical) may be 5. used, unless stated otherwise.
- If necessary, answers should be rounded off to TWO decimal places, unless stated 6. otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- Number the answers correctly according to the numbering system used in this 8. question paper. Write neatly and legibly.

Download more resources like this on ECOLEBOOKS.COM

April 2021 Common Test

QUESTION 1

Given the quadratic sequence: 44; 52; 64; 80; ...

- 1.1 Write down the next two terms of the sequence. (2)
- 1.2 Determine the n^{th} term of the quadratic sequence. (4)
- 1.3 Calculate the 30th term of the sequence. (2)
- 1.4 Prove that the quadratic sequence will always have even terms. (3)

 [11]

QUESTION 2

The 8th term of an arithmetic sequence is 31 and the sum of the first 30 terms is 1830.

Determine the first three terms of the sequence.

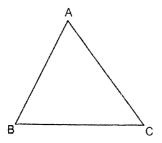
[7]

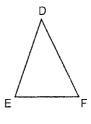
QUESTION 3

- 3.1 The second term of a geometric sequence $\frac{5}{128}$ and the ninth term is 5.

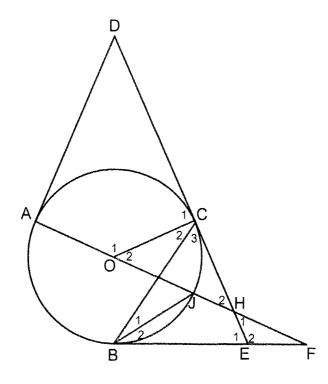
 Determine the value of the common ratio. (5)
- 3.2 Calculate the value of m if

$$\sum_{k=1}^{m} (-8) \cdot (0.5)^{k-1} = -\frac{255}{16}$$
(4)


3.3 Given: $\frac{24}{x} + 12 + 6x + 3x^2 + \dots$; $x \neq 0$.


- 3.3.1 Determine the value of x for which the series converges. (3)
- 3.3.2 Write down the value of x for which the series is increasing. (2) [14]

QUESTION 4


4.1 Given $\triangle ABC$ and $\triangle DEF$ with $\hat{A} = \hat{D}$, $\hat{B} = \hat{E}$ and $\hat{C} = \hat{F}$.

Prove that
$$\frac{AB}{DE} = \frac{AC}{DF}$$
 (7)

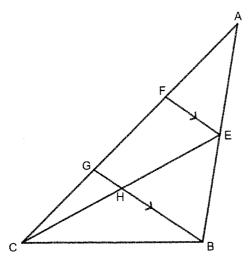
4.2 In the figure AD, DC and BE are tangents to the circle at A, C and B respectively. O is the centre of the circle. DE and AF intersect at H. AH produced meets BE produced in F. AJ, BC and BJ are chords.

Prove that:

4.2.1
$$\Delta DAH \parallel \Delta OCH$$
. (4)

$$OH = \frac{AO.DH}{DC} \tag{6}$$

4.2.3 If BA is drawn, then
$$BF^2 = JF \cdot AF$$
 (6)


[23]

Mathematics 5
Downloaded from Stanmorephysics.com

April 2021 Common Test

QUESTION 5

In the figure AF = 2CG and FE || GB. $\frac{AE}{AB} = \frac{2}{5}$.

Determine (with reasons):

$$5.1 \qquad \frac{AF}{EG} \tag{2}$$

$$5.2 \qquad \frac{CH}{HF} \tag{4}$$

$$5.3 \qquad \frac{Area \ of \ \Delta BCG}{Area \ of \ \Delta AFE} \tag{4}$$

[10]

QUESTION 6

6.1 Given $\cos 26^\circ = \frac{1}{p}$

Without using a calculator, calculate the value of the following in terms of p.

$$6.1.1 \cos 52^{\circ}$$
 (4)

$$6.1.2 \sin 71^{\circ}$$
 (4)

6.2 Simplify without using into a single trigonometric ratio.

$$\frac{\cos(-180^{\circ}).\tan\theta.\cos690^{\circ}.\sin(\theta-180^{\circ})}{\cos^{2}(\theta-90^{\circ})}$$
 (5)

6.3 Show that

$$\cos 0^{\circ} + \cos 1^{\circ} + \cos 2^{\circ} + \dots + \cos 178^{\circ} + \cos 179^{\circ} + \cos 180^{\circ} + 6\sin 90^{\circ} = 6$$
 (4)

[17]

QUESTION 7

7.1 Prove the following identity:

$$\frac{1 - \sin 2x}{\sin x - \cos x} = \sin x - \cos x \tag{3}$$

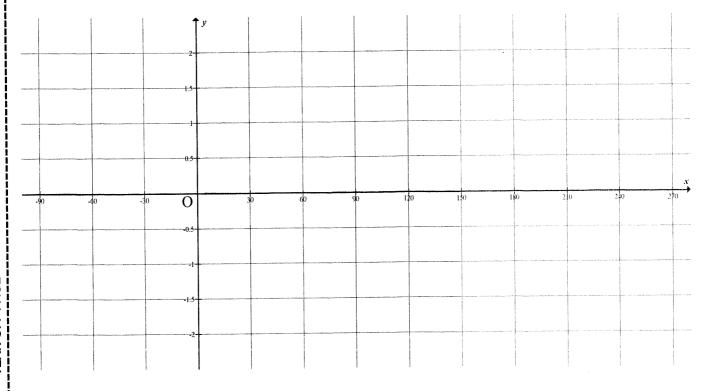
7.2 Determine the general solution of:

$$\tan 3x \cdot \frac{1}{\tan 24^{\circ}} - 1 = 0 \tag{5}$$

- 7.3 Determine the maximum value of $\sqrt{3} \sin x + \cos x$, without the use of a calculator. (4)
- 7.4 Given: $f(x) = 2\cos(x 30^\circ)$
 - 7.3.1 Sketch the graph of f for the domain $x \in [-90^\circ; 270^\circ]$ on the axes provided. (2)
 - 7.3.2 Use the letters P and Q to indicate on the graph the solution of the equation $cos(x 30^\circ) = 0.5$ and the x coordinates of P and Q. (4)

Download more resources like this on ECOLEBOOKS.COM

Mathematics 7
Downloaded from Stanmorephysics.com

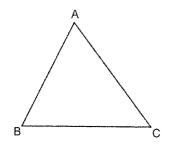

April 2021 Common Test

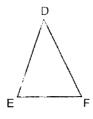
NAME:		
1 7 A 1 7 B 12/0		

GRADE:

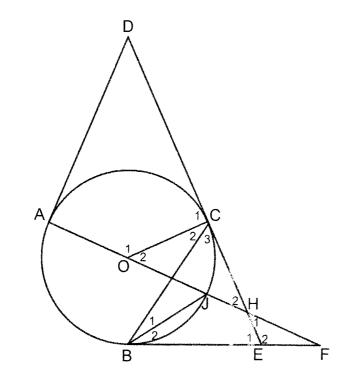
ANSWER SHEET

Question 7.3.1

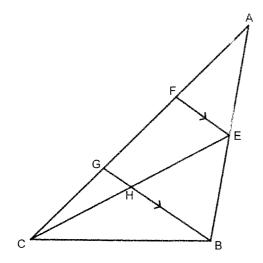



TEAR-OFF PAGE

GRADE:


DIAGRAM SHEET

QUESTION 4.1



QUESTION 4.2

QUESTION 5

April 2021 Common Test

INFORMATION SHEET: MATHEMATICS INLIGTING BLADSY

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1 + ni)$$
 $A = P(1 - ni)$ $A = P(1 - i)^n$

$$A = P(1 - ni)$$

$$A = P(1-i)^n$$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)d$$

$$T_n = a + (n-1)d$$
 $S_n = \frac{n}{2}(2a + (n-1)d)$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{n-1}$$

$$r \neq 1$$

$$T_n = ar^{n-1}$$
 $S_n = \frac{a(r^n - 1)}{r - 1}$; $r \neq 1$ $S_{\infty} = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$P = \frac{x[1 - (1 + i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$y - y_1 = m(x - x_1)$$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cdot \cos A$ area $\triangle ABC = \frac{1}{2}ab \cdot \sin C$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$area \Delta ABC = \frac{1}{2}ab.\sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$n(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$\bar{x} = \frac{\sum f.x}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$\hat{y} = a + bx$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2}{n}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS

MARKING GUIDELINE

COMMON TEST

APRIL 2021

MARKS: 100

This memorandum consists of 9 pages.

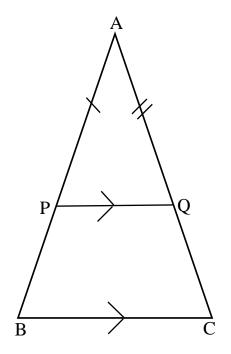
Copyright Reserved

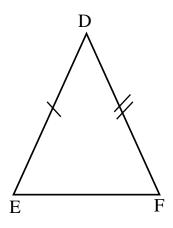
Please Turn Over

QUESTION 1

1.1	100; 124	AA✓✓answers	(2)
1.2	1D 8 12 64 80 2D 2D 4		
	$2a = 4 \therefore a = 2$ $3a + b = 8 \therefore b = 2$ $a + b + c = 44 \therefore c = 40$ $T_n = 2n^2 = 2n + 40$	$A \checkmark a$ value $CA \checkmark b$ value $CA \checkmark c$ value $CA \checkmark n$ th term	
	OR	OR	
	2a = 4 : a = 2 3a + b = 8 : b = 2 $c = T_0 = 40$ $a = 2n^2 + 2n + 40$	$A \checkmark a$ value $CA \checkmark b$ value $CA \checkmark c$ value $CA \checkmark n$ th term	(4)
	OR	OR	
	$T_n = T_1 + (n-1)d_1 + (n-1)(n-2)d_2$ OR $T_n = \frac{(n-1)}{2}[2a + (n-2)d] + T_1$	OR	(4)
1.3	$T_{30} = 2(30)^2 + 2(30) + 40 = 1900$	CA✓ substitution CA✓ answer	(2)
1.4	$T_n = 2n^2 + 2n + 40$ $T_n = 2(n^2 + n + 20)$ $2(n^2 + n + 20)$ is even for all $n \in \mathbb{Z}$	A \checkmark Taking out common factor of 2 A \checkmark Rewriting nth term A \checkmark is even for all $n \in \mathbb{Z}$ Note: Mark CA provided T_n (from 1.2) is a factor of 2	(3)
			[11]

Downloaded from $Stan \stackrel{NSC-Marking\ Guideline}{more physics.} com$


QUESTION 2


$a + 7d = 31 \qquad \rightarrow (1)$	A ✓ equation (1)		1
15(2a + 29d) = 1830			l
$2a + 29d = 122 \qquad \rightarrow (2)$	A ✓ equation (2)		l
$a = 31 - 7d \qquad \rightarrow (3)$	CA ✓ making <i>a</i> the subject		l
2(31-7d)+29d=122	CA \checkmark correct substitution of <i>a</i>		l
62 - 14d + 29d = 122			l
15d = 60			l
d = 4	CA √ <i>d</i> value		l
a = 3			l
3;7; 11;	CA√ sequence	[7]	l
			l
	$15(2a + 29d) = 1830$ $2a + 29d = 122 \rightarrow (2)$ $a = 31 - 7d \rightarrow (3)$ $2(31 - 7d) + 29d = 122$ $62 - 14d + 29d = 122$ $15d = 60$ $d = 4$ $a = 3$	$15(2a + 29d) = 1830$ $2a + 29d = 122 \rightarrow (2)$ $a = 31 - 7d \rightarrow (3)$ $2(31 - 7d) + 29d = 122$ $62 - 14d + 29d = 122$ $15d = 60$ $d = 4$ $a = 3$ $CA \checkmark \text{ equation } (2)$ $CA \checkmark \text{ making } a \text{ the subject } CA \checkmark \text{ correct substitution of } a$	$15(2a + 29d) = 1830$ $2a + 29d = 122 \rightarrow (2)$ $a = 31 - 7d \rightarrow (3)$ $2(31 - 7d) + 29d = 122$ $62 - 14d + 29d = 122$ $15d = 60$ $d = 4$ $a = 3$ $CA \checkmark \text{ equation } (2)$ $CA \checkmark \text{ making } a \text{ the subject } CA \checkmark \text{ correct substitution of } a$

QUESTION 3

3.1	$ar = \frac{5}{128} \longrightarrow (1)$	A√equation (1)	
	$ar^8 = 5 o (2)$	A✓equation (2)	
	$r^7 = 128$ $r^7 = 2^7$ $r = 2$ ÉcoleBooks	$CA \checkmark r^7 = 128$ $CA \checkmark exponential form$ $CA \checkmark answer$	(5)
3.2	$(-8) + (-8)(0.5) + (-8)(0.5)^2 + \cdots$	A√generating series	
	$\frac{-8(0.5^m - 1)}{0.5 - 1} = -\frac{255}{16}$	CA√correct substitution into correct formula	
	$0.5^m - 1 = -\frac{255}{256}$		
	$0.5^m = \frac{1}{256} = 0.5^8$	CA✓ writing in exponential form or using logs	
	m = 8	CA√answer	(4)
3.3.1	-1 < r < 1	A√condition for convergence	
	$-1<\frac{x}{2}<1$	$A \checkmark r$ value	
	-2 < x < 2	CA✓answer	(3)
3.3.2	x < -2 or x > 2	CACA✓✓answer	(2)
			[14]

QUESTION 4

4.1	Draw $AP = DE$ and A	AO = DF	✓S Construction (or could be	
	In \triangle ABC and \triangle DEF		shown on diagram)	
	1. AP = DE		, ,	
		(Construction) ÉcoleBoo	ks	
	$3. \ \widehat{\mathbf{A}} = \widehat{\mathbf{D}}$	(Given)		
	$\therefore \Delta \mathbf{APQ} \equiv \Delta \mathbf{DEF}$	*		
	Now $\mathbf{A}\mathbf{\hat{P}}\mathbf{Q} = \mathbf{D}\mathbf{\hat{E}}$, ,	✓S/R	
	But $\mathbf{D}\mathbf{\hat{E}}\mathbf{F} = \mathbf{\hat{B}}$	(Given)	✓S	
	$\therefore \mathbf{A}\widehat{\mathbf{P}}\mathbf{Q} = \widehat{\mathbf{B}}$,	✓S	
	PQ BC	(Corresponding angles =)	✓S/R	
	$\frac{AB}{} = \frac{AC}{}$	(D. T. DOUDG)	45.5	
	${AP} = {AY}$	(Prop. Thm. $PQ BC$)	✓S/R	
	$\frac{AB}{B} = \frac{AC}{B}$	(Construction $AP = DE$	√R	
	DE DF	(Construction AP = DE	V R	(7)
		and $AQ = DF$)		(7)
4.2.1	In △DAH and △OC I	Н		
	1. $\mathbf{D}\mathbf{\hat{A}}\mathbf{H} = \mathbf{O}\mathbf{\hat{C}}\mathbf{H}$	=90° (Radius ⊥Tangent)	/ G / P	
	2. $\hat{\mathbf{H}}_2$ is commo		$\checkmark S \checkmark R$	
	=	(Remaining angles)	✓S	(4)
	∴ Δ DAH Δ OC H		(D(AAA)	(4)
		(11111)	\checkmark R(AAA)	

Downloaded from $Stan \overset{NSC-Marking\ Guideline}{more physics.} com$

4.2.2	$\frac{\mathrm{DA}}{\mathrm{OC}} = \frac{\mathrm{DH}}{\mathrm{OH}} = \frac{\mathrm{AH}}{\mathrm{CH}} \qquad (\Delta \mathbf{DAH} \parallel\mid \Delta \mathbf{OCH})$	✓S/R	
	$OH = \frac{DH \times OC}{DA}$	✓S	
	DA = DC (Tangents drawn from common point equal)	✓S✓R	
	AO = OC (Radii of a circle)	✓S✓R	
	Therefore		
	$OH = \frac{AO.DH}{DC}$		
			(6)
4.2.3	In $\triangle ABF$ and $\triangle BJF$		
	1. $\mathbf{B}\widehat{\mathbf{A}}\mathbf{F} = \mathbf{J}\widehat{\mathbf{B}}\mathbf{F}$ (Tangent – Chord Theorem)	✓S✓R	
	2. $\hat{\mathbf{F}}$ is common)	✓S	
	3. $\mathbf{A}\mathbf{\hat{B}}\mathbf{F} = \mathbf{B}\mathbf{\hat{J}}\mathbf{F}$ (Remaining angles)		
	$\therefore \Delta \mathbf{ABF} \parallel \Delta \mathbf{BJF} (AAA)$	✓S✓R	
	$\therefore \frac{AB}{BJ} = \frac{BF}{JF} = \frac{AF}{BF} \qquad (\Delta ABF \parallel \Delta BJF)$	✓S	
	$BF^2 = JF \cdot AF$		(6)
			(6) [23]

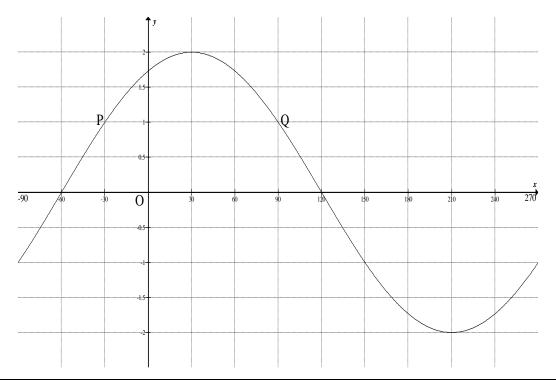
Download more resources like this on ECOLEBOOKS.COM Mathematics 6 April 2021 Common Test

QUESTROYN Joaded from Stanmorephysics.com

QUES	MON Bodded Trom Stammor epriyoles. com		
	2b 2a 2b 2a 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
5.1	Let AE = 2a therefore EB = 3a	✓S ✓R	(2)
5.1	$\frac{AF}{FG} = \frac{2}{3}$ (Prop. Thm.; FE//GB) or (Line // one side of Δ)	J. S. K	(2)
5.2	Let AF = 2b and FG = 3b Then CG = b (Given AF = 2CG)	√S	
	$\frac{\text{CH}}{\text{HE}} = \frac{\text{CG}}{\text{GF}} = \frac{b}{3b}$ (Prop. Thm.; GH//FE) or (Line // one side of Δ)	✓S ✓R	
	$\therefore \frac{CH}{HE} = \frac{1}{3}$	✓S	(4)
5.3	$\frac{AE}{AB} = \frac{AF}{AG} = \frac{FE}{GB} = \frac{2}{5} \dots \text{ (Prop. Thm; FE GB) or (Line // one side of } \Delta)$ $C\widehat{G}B = G\widehat{F}E \dots \text{ (Corresp Angles ; FE GB)}$ $Let FE = 2x \text{ and } GB = 5x$ $Then$	✓S/R	
	$\frac{\text{Area of } \triangle BCG}{\text{Area of } \triangle AFE} = \frac{\frac{1}{2}(b)(5x)\sin C\widehat{G}B}{\frac{1}{2}(2b)(2x)\sin A\widehat{F}E}$	✓S	
	$= \frac{\frac{1}{2}(b)(5x)\sin C\widehat{G}B}{1}$	√S	
	$= \frac{1}{2}(2b)(2x)\sin(180^{\circ} - C\widehat{G}B)$ $= \frac{5}{4}$	✓S	(4)
	OR	OR	
	Area of \triangle BCG = $\frac{1}{6}$ Area of \triangle ABC (Equal Heights)	✓S/R	
	Area of \triangle AFE = $\frac{1}{3}$ Area of \triangle AEC (Equal Heights)	✓S/R	
	Area of \triangle AEC = $\frac{2}{5}$ Area of \triangle ABC(Equal Heights)	✓S	
	Area of \triangle AFE = $\frac{2}{15}$ Area of \triangle ABC	✓S	
	$\frac{\text{Area of } \triangle \text{ BCG}}{\text{Area of } \triangle \text{ AFE}} = \frac{15}{12} = \frac{5}{4}$		(4)
			[10]

QUESTROY Oaded from Stanmore physics.com

6.1.1			
0.1.1	$32^{\circ} \qquad 128^{\circ}$ $\sqrt{p^2 - 1} \qquad p$	A√diagram	
	$ \frac{26^{\circ} 52^{\circ}}{1} $ $ \cos 52^{\circ} = \cos[2(26^{\circ})] $ $ = 2\cos^{2} 26^{\circ} - 1 $ $ = 2(\frac{1}{p})^{2} - 1 $	A√writing as double angle A√expansion CA√answer	(4)
6.1.2	$ sin 71^{\circ} = sin (45^{\circ} + 26^{\circ}) = sin 45^{\circ} cos 26^{\circ} + cos 45^{\circ} sin 26^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{1}{p} + \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{p^{2} - 1}}{p} $	A√sin(45° + 26°) A√compound angle expansion CA CA ✓√each term	(4)
6.2	$\frac{\cos(-180^{\circ}) \cdot \tan \theta \cdot \cos 690^{\circ} \cdot \sin (\theta - 180^{\circ})}{\cos^{2}(\theta - 90^{\circ})}$ $= \frac{\cos(180^{\circ}) \times \frac{\sin \theta}{\cos \theta} \cdot \cos 30^{\circ} \cdot (-\sin \theta)}{\sin^{2} \theta}$ $= \frac{(-1) \times \frac{\sin \theta}{\cos \theta} \cdot \left(\frac{\sqrt{3}}{2}\right) (-\sin \theta)}{\sin^{2} \theta}$ $= \frac{\frac{\sqrt{3} \sin^{2} \theta}{2 \cos \theta}}{\sin^{2} \theta}$	$A \checkmark \frac{\sin \theta}{\cos \theta}$ $A \checkmark \cos 30^{\circ}.$ $A \checkmark - \sin \theta$ $CA \checkmark \frac{\sqrt{3}}{2} \text{or } 0,866$	
	$=\frac{\sqrt{3}}{2\cos\theta}$	CA✓answer	(5)
6.3	LHS = $\cos 0^{\circ} + \cos 1^{\circ} + \cos 2^{\circ} + \dots + \cos 178^{\circ} + \cos 179^{\circ} + \cos 180^{\circ} + 6\sin 90^{\circ}$ = $\cos 0^{\circ} + \cos 1^{\circ} + \cos 2^{\circ} + \dots - \cos 2^{\circ} - \cos 1^{\circ} - \cos 0^{\circ} + 6\sin 90^{\circ}$ = $6 = \text{RHS}$	$A\checkmark - cos 2^{\circ}$ $A\checkmark - cos 1^{\circ}$ $A\checkmark - cos 0^{\circ}$ $A\checkmark$ All terms cancel except 6	(4)
	OR LHS = (cos 0° + cos 180°) + (cos 1° + cos 179°) + (cos 2° + cos 178°) + 6sin 90° LHS = (0) + (0) + (0) + 6sin 90° LHS = 6	A \checkmark (cos 0° + cos 180°) A \checkmark (cos 1° + cos 179°) A \checkmark (cos 2° + cos 178° A \checkmark All terms cancel except 6	[17]


Download more resources like this on ECOLEBOOKS.COM Mathematics 8 April 2021 Common Test

QUESTROYN oaded from Stanmorephysics.com

7.1	$1-\sin 2x$		
	sin x - cos x		
	$-\frac{\sin^2 x - 2\sin x \cos x + \cos^2 x}{2}$	$A \checkmark \sin^2 x + \cos^2 x = 1$	
	$ \sin x - \cos x$	$A \checkmark 2 \sin x \cos x$	
	$=\frac{(\sin x - \cos x)^2}{}$		
	$-\sin x - \cos x$	$\mathbf{A}\checkmark(\sin x - \cos x)^2$	
	$= \sin x - \cos x$		
	= RHS		
			(2)
7.2	1		(3)
1.2	$\tan 3x \cdot \frac{1}{\tan 24^{\circ}} - 1 = 0$		
		A√transposing and forming	
	$\tan 3x = \tan 24^{\circ}$	equation	
	$3x = 24^{\circ} + 180k; k \in Z$	$A\checkmark 3x = 24^{\circ} A\checkmark 180k$	(5)
	$x = 8^{\circ} + 60k$; $k \in \mathbb{Z}$	$A \checkmark k \in Z$ $CA \checkmark x = 8^{\circ} + 60k$	
		Note: If calculator is used	
		maximum marks may be	
	_	allocated	
7.3	$2\left[\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x\right]$ ÉcoleBook	$A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$	
	$= 2[\sin 60^{\circ} \sin x + \cos 60^{\circ} \cos x]$	$A\checkmark [\sin 60^{\circ} \sin x + \cos 60^{\circ} \cos x]$	
	$= 2[\cos(x-60^\circ)]$		
	∴ Maximum value is 2, since maximum value of	$A\checkmark \cos(x-60^{\circ})$	
	$\cos(x - 60^\circ) = 1$	CA✓ answer	(4)
			(4)
	OR	OR	
	$2\left[\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x\right]$	$A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$	
	$= 2[\cos 30^{\circ} \sin x + \sin 30^{\circ} \cos x]$		
		$A\checkmark 2[\cos 30^{\circ} \sin x +$	
	$= 2[\sin(x+30^\circ)]$	$\sin 30^{\circ} \cos x$	
	1		(4)
	Maximum value is 2, since maximum value of $\sin (x + 30^{\circ}) = 1$	$A\checkmark \sin (x + 30^{\circ})$ CA \checkmark answer	

Downloaded from $Stan \overset{NSC-Marking\ Guideline}{more physics.} com$

7.4.1

		A \checkmark for both x – intercepts A \checkmark for both turning points	
	GG Écolo Do alva		(2)
7.4.2	$\cos(x-30^\circ)=0,5$	$A\checkmark x - 30^{\circ} = 60^{\circ}$	
	$2\cos(x-30^{\circ})=1$	and $x-30^{\circ}=-60^{\circ}$	
	$x-30^{\circ}=60^{\circ} or \ x-30^{\circ}=-60^{\circ}$	CA √ 90° and − 30°	
	$x = 90^{\circ} at Q or x = -30^{\circ} at P$	CACA✓✓ for P and Q	
			(4)
			[18]